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Abstract
Training large-scale deep learning (DL) models is a resource-
intensive and time-consuming endeavor, yet optimizing train-
ing efficiency poses significant challenges. The sporadic per-
formance fluctuations during long training require advanced
profiling capabilities. It is not easy to perform comprehen-
sive and accurate bottleneck analysis amidst numerous in-
fluencing factors. Selecting effective optimization strategies
without proper guidance further complicates the process. This
paper shares our practical insights on optimizing training on
Huawei Ascend chips based on three years of experience
with 135 typical cases. We propose a systematic optimization
system, Hermes, including a lightweight profiling approach,
a hierarchical bottleneck analysis framework, and an opti-
mization advisor. Our real-world experiments demonstrate
significant acceleration in training for models like PanGu-α,
MobileNetV1, and MoE (Mixture of Experts), with respective
speedups of 3.05×, 1.91×, and 1.19×.

1 Introduction

Large-scale deep learning model training is notoriously costly
and time-consuming. For example, training a GPT-3 model
with 100.8 billion parameters using 3,072 NVIDIA A100
GPUs took 84 days [41]. Similarly, training the BLOOM-
176B model with 384 A100 GPUs required approximately 3.5
months [60]. Even the optimized M6 model with 10 trillion
parameters took 10 days on 512 V100 GPUs [32].

In optimizing large-scale training, various roles are in-
volved, including developers, deployers, and maintainers. De-
velopers must precisely identify bottlenecks hindering train-
ing efficiency to develop targeted optimization strategies. De-
ployers, on the other hand, are responsible for efficiently de-
ploying models on hardware. However, as models and hard-
ware evolve, bottlenecks also shift, requiring precise identi-
fication and appropriate optimization choices. Meanwhile,
maintainers confront random performance fluctuations [27]
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during long training and require the ability to accurately cap-
ture the underlying causes to maintain stable training. Overall,
there is an urgent need for a comprehensive and systematic
approach to profile, analyze, and optimize training.

However, existing solutions for profiling, analysis, and op-
timization face significant limitations. First, capturing tran-
sient performance fluctuations requires continuous monitor-
ing. However, mainstream profiling tools like Pytorch Pro-
filer [50] not only incur substantial overhead but also fre-
quently interrupt training because users must manually adjust
the profiling granularity. Second, existing bottleneck analysis
relies largely on manual effort, with available tools focus-
ing solely on specific bottlenecks (PRESTO [24] for I/O,
R-Pingmesh [34] and Meta’s work [19] for RDMA), leaving
out a comprehensive analysis. Last, current optimization heav-
ily depends on the expertise of users, and the few available
optimization tools are limited to particular scenarios, such
as DayDream [70] and dPRO [22] designed for data paral-
lelism. The lack of guidance makes selecting the appropriate
optimizations challenging.

In this paper, we share our 3 years of experience in bottle-
neck optimization of deep learning model training on Ascend
chips (NPUs) [31]. From January 2022 to December 2024, we
resolved 223 performance anomalies for over 40 clients and
summarized 135 key cases. Our practice reveals several criti-
cal lessons that have guided our optimization efforts (§3.1).
CPU bottlenecks are prevalent but often overlooked. Compu-
tation bottlenecks are mainly due to underutilization, which
requires joint software and hardware optimization. We also
found that overlapping computation and communication may
degrade performance due to resource contention. I/O bottle-
necks primarily result from CPU-side data reading overhead,
and minimizing remote access is crucial. Hardware faults like
port flapping and link failures usually cause network issues.

To address the complex and diverse bottlenecks in produc-
tion, we introduce Hermes, a system based on these lessons to
guide the optimization of DL model training on Ascend NPUs.
Hermes supports the common DL frameworks PyTorch [2]
and MindSpore [39] and tackles the following problems. (i)



Besides profiling common performance anomalies, how can
we effectively detect performance fluctuations in large-scale
training, a newly emerging issue? (ii) For the vast and complex
bottleneck space in training, how do we achieve systematic
and accurate bottleneck analysis? (iii) Finally, how do we
select effective optimizations for identified bottlenecks or
potential new arising bottlenecks?

Our contributions can be summarized as follows.
Coarse-to-fine profiling (§4.1): We propose a lightweight
monitor to collect critical metrics and identify problematic
steps and devices, as well as a detailed profiler to further cap-
ture the performance of each operator1 for bottleneck analysis
in problematic steps and devices. These two tools work to-
gether to provide a complete view of the training process
with minimal overhead. Combined with our dynamic profil-
ing mechanism, they enable efficient profiling of performance
fluctuations without interrupting the training.
Hierarchical bottleneck analysis framework (§4.2): We
observe that the training pipeline operates hierarchically, with
different types of bottlenecks occurring in the corresponding
components (host, device, and network). Thus, we propose
a hierarchical analysis that first considers the inter-operator
parallelism and then delves into the intra-operator implemen-
tation. The inter-operator analysis verifies the existence of a
poor overlap between components and further identifies the
bottleneck operators with the critical path when the overlap
is sufficient. In the intra-operator analysis, we delve into the
execution process of each component (e.g., data processing,
dispatch of operators, memory and compute competition, net-
work communication) to identify the root cause.
Bottleneck cause-optimization match (§4.3): Based on 3
years of training optimization experience and 135 typical bot-
tleneck cases, we have matched different bottleneck causes
with possible optimization strategies (Table 4). We also devel-
oped an automatic optimization tool, mindstudio training tool
(mstt) advisor [6]. Based on its built-in optimization rules
learned from practice, it can automatically detect the causes
of bottlenecks and provide optimization suggestions.

To show how to use Hermes for optimization, we present
numerous cases, covering optimizations of classic bottle-
necks and production tasks (§5). Our real-world cases in-
clude optimizing the 100B PanGu-α model [65], deploying
MobileNetV1-SSD [35], and addressing performance fluctua-
tions in MoE model training across over 9000 NPUs. These
case studies show how to apply optimization based on bot-
tleneck analysis and achieve speedups of 3.05×, 1.91×, and
1.19×, respectively, confirming the effectiveness of Hermes.

2 Background and Motivation

In this section, we present the goals and problems faced by
different users in training and compare the differences and

1A basic mathematical operation (e.g., matrix multiply, convolution).
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Figure 1: Different roles in model training.

connections between Ascend NPU and NVIDIA GPU, which
together motivate our systematic analysis and optimization.

2.1 Roles in Real-World Model Training
As shown in Figure 1, in real-world model training, three
roles of users are involved: developers, deployers, and main-
tainers. Each role has specific responsibilities, challenges,
and goals in optimizing training performance. (i) Develop-
ers are responsible for developing optimizations for different
bottlenecks, such as I/O [24], computation [38],communica-
tion [46], or parallelism [25, 57, 67]. Therefore, developers
must first identify specific bottlenecks that limit training ef-
ficiency, and then design targeted optimizations to mitigate
them. (ii) Deployers deploy models on hardware and achieve
high training efficiency. However, in practical deployment,
users face constantly evolving models and hardware, leading
to shifting training bottlenecks and rendering previous opti-
mizations potentially unsuitable. Therefore, deployers must
analyze bottlenecks and select appropriate optimizations to
achieve the expected training performance. (iii) Maintainers
monitor model training, ensuring smooth progress. However,
in large-scale training, performance fluctuations [27] occur
frequently and undermine training efficiency. In a 5-month
cluster observation, an average of 2.4 incidents were recorded
per month. In an 18,000-card cluster, single-card throughput
ranged from 10 to 106 TFLOPs/s, with an average of only 85
TFLOPs/s, achieving only 84% of the expected throughput.
Therefore, maintainers must accurately capture performance
fluctuations and identify the underlying causes.

Training optimization usually consists of three key steps: 1)
Profiling to collect key performance metrics; 2) Analyzing to
identify training bottlenecks; and 3) Optimizing by applying
suitable optimizations. Combining the goals of different roles,
we summarize the requirements for training optimization.
• Detailed but lightweight profiling. Users should be able

to collect detailed performance metrics, while profiling
should be lightweight to monitor performance fluctuations.

• Locating various bottlenecks accurately. Users should be
able to accurately identify I/O, computation, communica-
tion, and parallel bottlenecks.

• Efficient optimization suggestions. Users should be able to
choose effective optimizations based on bottleneck causes.
Although many technologies have been proposed to meet



these requirements, there are still some significant challenges.
Profiling: To capture transient performance fluctuations in
long-term training, maintainers need to continuously monitor
and collect detailed performance data for each step/NPU [50].
As shown in §4.1.3, simply profiling the single-step training
of an 8B Llama-3 model on 8 NPUs incurs an overhead of
1.77× the original cost. Given the high per-step overhead,
the cumulative cost of continuous profiling over thousands of
steps in large model training becomes intolerable.
Analysis: Existing bottlenecks analysis are largely manual,
users must explore all potential bottlenecks and compare
the profiling results with the expertise [44]. Even if some
auto-analysis can help users identify bottlenecks, they are
limited to specific types, such as I/O [24] and RDMA bot-
tlenecks [19, 34]. However, isolated analyses often miss the
interdependencies between bottlenecks. For example, syn-
chronization issues in communication bottlenecks may stem
from uneven computational loads, while long computation
times could result from slow operator compilation or dispatch
on the CPU side. Therefore, the challenge lies in comprehen-
sively identifying different types of bottlenecks.
Optimization: Although some tools like DayDream [70]
and dPRO [22] can predict optimization effects based on
task dependencies, their application is restricted to data par-
allelism [36]. In most cases, developers select optimizations
without knowing the causes of bottlenecks, which can render
the proposed optimization less effective. However, due to the
complexity of the root causes and the diversity of optimiza-
tions, it is also challenging to match effective optimizations
to different bottlenecks.

2.2 Comparison of NPU and GPU

Before addressing these challenges, it is necessary to learn
the background of Ascend NPUs, especially the similarities
and differences with NVIDIA GPUs.

Similar to GPUs, Ascend NPUs also follow the same hier-
archical training paradigm. And NCCL, CUDA, and NVLink
for GPUs correspond to HCCL (Huawei Collective Commu-
nication Library) [10], CANN (Compute Architecture for
Neural Networks) [3], and HCCS (Huawei Cache Coherent
System) [20] in Ascend, respectively. As shown in Figure 2,
the training process on Ascend NPUs can be divided into the
following layers: (i) Application. Users can train different
types of models according to their needs, such as NLP, vision,
recommendation, and multimodal. (ii) Framework. Ascend
can support mainstream deep learning frameworks such as
PyTorch, MindSpore, and TensorFlow [1] to convert model
code into computation graphs. (iii) Communication. HCCL
provides parallel communication in distributed training, sup-
porting algorithms such as Ring and Mesh, and primitives
such as AllReduce and AlltoAll. (iv) Platform. CANN is
responsible for converting the computation graph into exe-
cutable operators on Ascend NPUs, consisting of the operator
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Figure 2: The training paradigm on Ascend NPUs.

library, compiler, and runtime (task scheduling). (v) Hardware.
Finally, the operators are dispatched to NPUs for execution,
while PCIe and HCCS for intra-node communication, and
RDMA for inter-node communication. The detailed topology
is given in Appendix A.

It is worth noting that there are some differences between
the two in terms of chip architecture. In NPUs, AICore [31] is
the computing core (similar to CUDA Core and Tensor Core
in GPUs), responsible for performing computation-intensive
tasks such as matrix and vector operations. However, un-
like the GPU, there is another computing unit with slightly
lower performance, AICPU [31], which is responsible for
non-matrix computing tasks that AICore does not support.

Taking these into account, we can categorize training bot-
tlenecks into two groups: (i) Hardware-agnostic bottlenecks.
Since the consistent training paradigm and behaviors (data
preprocessing, forward and backward computation, gradient
update, and parallel strategies), common training bottlenecks,
such as low parallelism, high I/O delays, inefficient computa-
tion, and slow communication synchronization, are universal
regardless of whether the hardware is NVIDIA GPU or As-
cend NPU. (ii) Hardware-specific bottlenecks refers to perfor-
mance bottlenecks introduced due to Ascend’s architecture
characteristics that need to be analyzed separately, such as the
inefficient AICPU operators, the overhead of private format
for AICore, and the byte alignment requirements in HCCS.

Therefore, different bottleneck types lead to different profil-
ing requirements. Compared to NVIDIA GPUs, the profiling
of Ascend NPUs differs in two key aspects: (i) First, consid-
ering differences in architecture such as AICore, AICPU, and
HCCS, dedicated profiling interfaces for these units are neces-
sary to capture their performance metrics. (ii) Second, while
NVIDIA Nsight [44] provides granular profiling interfaces
for GPU kernels, network communication, storage, and more,
it primarily treats these as isolated bottlenecks. The profiling
of Ascend needs a holistic bottleneck analysis and actionable
optimization recommendations.

3 Lessons and Insights

In this section, we will share the lessons learned from our
practices and insights to achieve a holistic bottleneck analysis.



3.1 Lessons

We have summarized the following lessons from 135 training
optimization cases on Ascend NPUs, including I/O, CPU,
parallel, computation, and communication bottlenecks.
CPU scheduling bottlenecks dominate in practice but are
often overlooked. As shown in Table 4, among all our op-
timization cases, host bottlenecks account for 45.9%, with
CPU bottlenecks reaching 37.0%. This problem exists on
both GPUs and NPUs. Although the executing streams of the
CPU and device can operate asynchronously, synchronization
and data transfers between the CPU and device can severely
impact training efficiency. For example, recompilation of the
operators can introduce the CPU bottleneck. Specifically, in
the Pytorch framework, operators follow this compilation and
execution logic. When an operator is invoked, the CPU first
checks if it has been pre-compiled. If not, it undergoes just-in-
time (JIT) compilation [49] to generate a binary executable
dispatched to the device, which will introduce extra overhead.
Underutilization dominates computation bottlenecks. The
computation bottleneck analysis reveals a significantly higher
proportion of underutilized operators, ranging from 61.48%
in 100B PanGu-α to 97.8% in ResNet50. And smaller models
tend to exhibit a higher percentage of underutilization. When
optimizing underutilized operators, it is essential to consider
the characteristics of the Ascend hardware. The first possi-
ble cause is the AICPU operators. Due to the input type (not
supported by AICore) or an implementation problem, the oper-
ators can only be executed on poorly performing AICPUs. In
such cases, we should eliminate AICPU operators by convert-
ing data types (supported by AICore) or other substitutions.
Similarly, replacing operators with better hardware affinity
for AICore is another method to improve model FLOPs uti-
lization (MFU). We define "good affinity" as whether the
operator’s shape meets the hardware’s memory layout and
alignment requirements (e.g., whether the inner axes of Cube
computation are divisible by 256).
Contention between computation and communication. Par-
allel computing and communication can boost performance,
but we observe that their concurrent execution may degrade
performance in some situations. The root cause lies in re-
source contention, particularly the contention for HBM band-
width. Specifically, communication tasks such as HCCS can
access HBM via Direct Memory Access (DMA), whereas
the primary computation matrix multiplication (MatMul) is
often memory-bound. This leads to HBM bandwidth con-
tention, resulting in lower-than-expected computing perfor-
mance, often a drop of 20% to 40%. For example, in ten-
sor parallelism, splitting the serial GEMM computation and
communication into chunks [13, 27] can enable fine-grained
overlap and greatly improve performance. However, overlap-
ping computation and communication chunks can compete
for HBM bandwidth, which affects individual performance.
Thus, setting fine-grained priorities for HBM access can pre-

vent such contention and further accelerate training.
Minimize remote access to alleviate I/O bottlenecks. I/O
bottlenecks stem mainly from high data reading and pro-
cessing overhead on the CPU side, which cannot overlap
with NPU computations. In large-scale training, data reading
bottlenecks are particularly prominent due to read/write on
remote storage, including other remote access except for train-
ing data, such as checking file paths or writing logs. There-
fore, unnecessary remote accesses should be minimized, for
instance, by reading data only from the local card or DP do-
main. When unavoidable, like logging, data can be written to
local storage first and periodically flushed to remote storage.
Port flapping and link failures dominate network issues.
Based on our experience, network problems are mainly due
to hardware, such as port flapping and link failures. Moreover,
the closer these issues occur to the compute nodes, the greater
their impact on the training performance of clusters. Thus,
it is essential to promptly clean and replace optical modules
and repair links with packet loss or error.

3.2 Insights

Based on these lessons, we have the following insights to
achieve a holistic bottleneck analysis.

The training pipeline operates hierarchically, with different
types of bottlenecks occurring in the corresponding compo-
nents. As shown in Figure 2, the framework converts the
program into a computational graph, with parallel strategies
organized by HCCL, and finally, the graph is converted into
executable operators on the hardware through the CANN.
Specifically, data preparation is executed by CPU and DRAM
storage on the host, while computation operators are mainly
executed by AICore and AICPU on the device, and commu-
nication operators involve HCCS and RDMA on the network.
Therefore, operator bottlenecks typically manifest in specific
components, stemming from (i) issues in the operator’s im-
plementation and (ii) poor hardware efficiency.

In addition to bottlenecks in operators, the parallelism be-
tween operators can also become a training bottleneck. For
example, Ascend supports multi-stream parallel execution in
Pytorch, with the parallel efficiency between streams directly
affecting the training. This includes not only the computation-
communication parallel bottlenecks that the well-known paral-
lel strategies (DP, TP, PP) aim to solve but also the parallelism
between I/O and computation, as well as CPU and compu-
tation. Parallel bottlenecks, in turn, affect the execution of
specific I/O, computation, and communication.

Considering parallel bottlenecks between operators and
performance bottlenecks within each operator, we propose
a hierarchical analysis. Specifically, bottleneck analysis is
divided into two layers: inter-operator parallel analysis and
intra-operator bottleneck analysis, covering all host, device,
and network components. In this way, it provides a structured
framework that can systematically decompose the complex
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training process into different layers and accurately identify
bottlenecks in the most common locations.

4 System Design

In this section, we first introduce the main workflow of Her-
mes, then dive into the design of each core module. As shown
in Figure 3, the main workflow consists of the following steps.
Coarse-to-fine profiling(§4.1): We observe that it only re-
quires a few key metrics to determine the presence of perfor-
mance fluctuations. Therefore, we propose a lightweight but
fine-grained profiler to identify the problematic steps/devices
and capture the necessary metrics.
Hierarchical bottleneck analysis(§4.2): We propose a hier-
archical analysis model that first considers the inter-operator
parallelism and then delves into the intra-operator implemen-
tation. In addition to identifying the bottleneck, we provide a
set of mechanisms to trace the root causes.
Experience-guided optimization(§4.3): Based on our expe-
rience in bottleneck optimization, we propose an optimization
advisor that automatically provides effective recommenda-
tions by establishing a match between bottleneck causes and
corresponding optimizations.

Users can select the necessary steps based on their goals,
e.g., the developer only needs to perform the profiling and
analysis, and then directly develop their optimization strat-
egy. The optimization workflow is iterative. After optimizing
the current bottleneck, users can repeat the process until the
desired performance is achieved.

4.1 Coarse-to-fine Profiling

As illustrated in Figure 3, the profiling module comprises a
lightweight monitor and fine-grained profiling. The former
collects key metrics in real-time to quickly identify problem-
atic steps and devices with little overhead. Next, fine-grained
profiling focuses on the problematic steps and devices, collect-
ing detailed performance data without interrupting training
while minimizing storage requirements and parsing times.
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4.1.1 Lightweight Monitor

For model developers and deployers, it suffices to profile
a selected step offline to analyze persistent slowdowns, as
the performance of each training step is consistent. How-
ever, continuous online profiling is the only viable approach
for maintainers who aim to pinpoint transient performance
fluctuations. Therefore, to minimize the overhead of online
profiling, this monitor collects only some coarse-grained key
metrics during the whole training, including (i) the execution
time of each step and (ii) overall performance such as through-
put, MFU, and communication bandwidth, which are also the
indicator of performance fluctuation.
Cluster Analysis. Based on the monitoring data, we use two
steps to identify problematic steps and devices. (i) The first
is to compare the execution time of the current step with the
historical ones. If the current step is significantly slower, it
indicates a performance fluctuation. (ii) We further need to
determine which devices are experiencing issues in this step.
Considering the various parallel strategies in training (e.g.,
data parallelism [30], tensor parallelism [41], and pipeline
parallelism [23, 40]), the whole cluster is divided into differ-
ent communication domains (devices involved in the same
synchronization). Devices within the same communication
domain theoretically have the same execution time. There-
fore, we compare the execution times of devices within each
communication domain to identify the slowest device, which
is often the problem device and requires further profiling.

4.1.2 Fine-grained Profiling

After identifying the problematic steps and devices, we per-
form fine-grained profiling. We first profile the operator (the
smallest execution unit) and collect metrics from various com-
ponents: (i) host operator, including I/O operator queues,
and CPU operator metrics related to the Pytorch framework
and the CANN operator library; (ii) computation operator,
computation performance (precision, frequency, FLOPs), and
memory access performance (byte and bandwidth) on NPUs;
(iii) communication operator, transfer time and bandwidth
of PCIe, HCCS, and RDMA interconnect. Furthermore, we
profile the timeline to illustrate the timing dependencies of
operators across different components. However, there are
two challenges when fine-grained profiling is applied.



Table 1: Profiling cost comparison of end-to-end training.

Model #Para #NPU Time Memory CPU usage
Before After Before After Before After

Bloom 7B 8 1300 s 1000 s 1650 MB 1800 MB 1% 5%
PanGu 230B 128 120 min 102 min 13.8 GB 16.2 GB 1% 5%

Dynamic profiling. Common profiling tools such as PyTorch
Profiler [50] require users to pre-configure monitoring pa-
rameters (e.g., via torch.profiler.schedule) before training be-
gins. This intrusive approach requires interrupting training,
which incurs prohibitive overhead for large-scale jobs due to
checkpoint reloading and warm-up costs. Recent works like
Llama-3 [17] have recognized this limitation and enabled on-
the-fly configuration changes [55]. On this basis, we propose
a more specialized and lightweight dynamic profiling frame-
work with the following features: (i) fully decoupled from the
program; (ii) faster synchronization based on shared memory
and thread-level updates; (iii) automatically perceives the con-
text to activate profiling and adapts to Ascend-specific metrics.
As shown in Figure 4, after modifying the configuration, each
node uses a dedicated thread to monitor configuration changes
(①) and places it in shared memory (②). Before the next step
starts, each rank reads the updated configuration and begins
executing profiling (③). Once the step ends, each rank outputs
the profiling results for subsequent parsing and configuration
adjustments (④). In addition, dynamic profiling can seam-
lessly integrate with the lightweight monitor, automatically
triggering when performance fluctuations are detected.
Efficient parsing. Fine-grained profiling data must go
through several parsing steps before being presented to users,
including reading, calculating, and visualizing. Considering a
cluster with 10,000 NPUs, the profiling data can reach several
TBs, potentially requiring days for processing and causing
visualization tools such as TensorBoard [21] and Chrome
Trace Viewer [16] to slow down or crash. Therefore, we stan-
dardize the database format for all metrics, resulting in a
75% reduction in memory usage. We not only leverage multi-
threading and high I/O concurrency to accelerate parsing but
also utilize idle CPU resources across multiple machines
like Canopy [28]. In addition, we can hide the parsing latency
within the training phase by transitioning from synchronous to
asynchronous parsing. Finally, the MindStudio Insight tool [5]
can handle extremely large datasets (more than 10 GB) and
reduce latency to under 30 seconds, even with 10,000 cards.

4.1.3 Profiling Cost

Our design balances the overhead associated with the
lightweight monitor and fine-grained profiling. When training
the 8B Llama-3 model on 8 NPUs, each step takes 85.19 s
without profiling and 150.58 s with detailed profiling. With a
lightweight monitor, the time is only 85.20 s. After end-to-end
validation, our profiling significantly reduced training time
compared to existing profiling methods, with minimal impact
on resources. As shown in Table 1, when using coarse-to-fine

profiling compared to detailed profiling, the end-to-end train-
ing time is reduced by 23% for the 7B Bloom model with 8
NPUs and 15% for the 230B PanGu model with 128 NPUs.
Meanwhile, memory usage increased by only 9% and 5%,
respectively, while CPU usage increased by only 4%.

4.2 Hierarchical Bottleneck Analysis

Hermes employs a hierarchical analysis, which begins with
a parallel analysis across different operators and then delves
deeper into each operator to identify its bottleneck causes.

4.2.1 Inter-operator Analysis

Inter-operator analysis consists of two steps: (i) identifying
parallel bottlenecks among operators by multi-component par-
allel analysis; (ii) pinpointing bottleneck operators by critical
path analysis [29]. The overlap between host, computation,
and communication will directly affect the composition of
operators on the critical path, causing shifts in the bottleneck
operators. Consequently, two steps work together to first re-
solve parallel bottlenecks before optimizing specific operators
(I/O, CPU, computation, or communication).
Multi-component Parallel Analysis. Since components can
run in parallel, different types of operators can overlap to
accelerate training. Conversely, shorter overlaps reduce com-
ponent utilization, causing parallel bottlenecks. However, ex-
isting works (such as Syndicate [37]) focus solely on the
overlap between computation and communication without
considering the host operators. We perform a parallel anal-
ysis of operators across all components. A typical step time
is divided into several segments: overlap, where computa-
tion and communication/host operators run simultaneously;
non-overlap computation/communication/host; and free time.
Therefore, if the overlap ratio is significantly lower than the
threshold, it indicates the presence of parallel bottlenecks.
Further, for the non-overlapping parts, we should identify the
critical operators that are truly slowing down the training.
Critical Path Analysis. We extract the critical path [29] com-
posed of operators from different components along the time-
line, and accelerate training by reducing the execution time
of operators on it. Specifically, we infer a dependency be-
tween two operators across different components when the
completion time of one operator aligns with the start time of
the subsequent operator. We validate this by the inter-operator
relationships defined in the computation graph. Accordingly,
we develop a traversal algorithm starting from the last opera-
tor and searching backward to identify the longest sequence
of dependent operators that leads back to the initial operator.
In this way, we can pinpoint the critical operators that sig-
nificantly influence the execution time, reducing the number
of operators to be analyzed by more than half. We then rank
these critical operators by their execution times to identify the
most time-consuming ones for cause analysis.
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4.2.2 Intra-operator Analysis

Based on practical experience, we have summarized the
causes and detection mechanisms of various types of bot-
tlenecks for critical operators, including host-side I/O and
CPU, computation, and communication.
Queue-based I/O Analysis. To provide training data for com-
putation, I/O usually consists of the following stages. As
shown in Figure 5, the data first needs to be read from the
storage (data reading) and then transferred to the CPU for
processing (data processing). For example, the processing in
language models involves tokenization, padding & truncation,
and word vectorization [12]. Then, the processed data will
queue up on the host side, waiting to be transferred to the
devices (data fetching). All stages can lead to bottlenecks,
and we can use the corresponding queue states to identify
them. The Device Queue stores data transferred from the host
to the device. If the device queue is not empty, it indicates
that there is enough data to continue training, which does not
happen in I/O bottlenecks. Conversely, we then move to the
Host Queue, which stores processed data. If the host queue
is not empty, it indicates a fetching bottleneck, often due to
slow transfer between the host and device. Conversely, we
need to trace back to the Data Queue, which holds the reading
data. If the data queue is not empty, it indicates a processing
bottleneck. Otherwise, it points to a reading bottleneck.

Based on Meta’s I/O analysis [66], considering that data
processing is mainly CPU-based in our practice, we have sum-
marized the following common causes of I/O bottlenecks: (i)
Data reading. Low disk I/O bandwidth, or restricted network
bandwidth to access remote storage. (ii) Data processing.
Extra overhead from data format conversions, such as with
compressed files like zip and tar; no multiprocessing in the
dataloader (num_worker = 1); other multiprocessing opera-
tions that may affect the dataloader, like the taskset com-
mand [33] for process CPU binding. (iii) Data fetching. PCIe
transfer from host to device becomes a bottleneck. In this
case, consider enabling the pin_memory option to transfer
data directly to the device through DMA. Faced with com-
plex causes of I/O bottlenecks, Hermes only lists potential
causes corresponding to the current bottleneck to guide users
in inspecting the targeted configurations manually.
CPU Causes Analysis. The CPU handles the compilation of
operators and dispatches them to the device, and its perfor-
mance directly impacts overall training. Based on extensive
practice experience, we observe that various causes may result
in CPU bottleneck and summarize their reasons in Table 2.

Table 2: CPU bottleneck causes.
Cause Reason

Operator Compilation Dynamic shape operators require recompilation
Operator Dispatch Excessive dispatch or synchronous operations
Garbage Collection Frequent garbage collection events

CPU Resource Contention Interference of external CPU process
Environment Configuration Unsuitable hardware or software configurations

• Operator Compilation. Operators must be compiled on
the CPU to generate NPU-executable code. If an opera-
tor’s shape changes, JIT compilation is triggered, adding
extra compile time and causing a CPU bottleneck. Thus,
Hermes detects compilation timeout operators, especially
dynamic shape operators, and advises users to replace them
or disable JIT compilation.

• Operator Dispatch. Dispatching compiled operators from
the CPU to the NPU for execution can cause a CPU bottle-
neck. First, numerous small operators may be dispatched
frequently. Thus, Hermes provides fusible operator anal-
ysis to show the sequence of operators with fusion value.
It advises users to fuse these small operators into one, re-
ducing dispatch times. Second, although dispatch is asyn-
chronous, developers might introduce synchronous opera-
tions between CPU and NPU streams like SyncBatchNorm,
tensor.item, and reduce_all, which slow down the process.
Thus, Hermes detects the time-consuming synchronous
streams and displays their stack, which helps users modify
the code to eliminate these sync streams.

• Garbage Collection (GC). Python’s garbage collection
mechanism can automatically detect and free up memory
that is no longer in use. However, during large-scale train-
ing, the significant fluctuation in memory usage can trigger
garbage collection more frequently, which in turn leads to
drastic performance degradation. Thus, Hermes provides a
GC analysis to record the occurrences and durations of ab-
normal GC events. It suggests that users address GC prob-
lems by adjusting the threshold using gc.set_threshold()
or disabling GC using gc.disable().

• CPU Resource Contention. Other CPU processes unre-
lated to training may compete for resources, which affects
the training performance. In our experience, performance
monitoring tools like Prometheus [18] often preempt CPU
resources. So, Hermes periodically checks the CPU usage
of common processes to prevent such contention.

• Environment Configuration. Both hardware and software
configurations during training can affect performance.
Hardware factors like the number of CPU cores, frequency,
and computational power may be at play. Potential soft-
ware issues include OS bugs, high logging levels, memory
usage, and inconsistent driver versions. Hermes provides
self-test scripts to troubleshoot these potential problems.

Computation Cause Analysis. We use the Roofline
model [59, 64] to evaluate the computation performance. As
shown in Figure 6, the solid line represents the peak perfor-
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mance that an operator can achieve with a given arithmetic
intensity. The height of the line reflects the arithmetic perfor-
mance, while the slope of the line reflects the memory band-
width. We add two dashed lines for the thresholds: the left
one marks the bandwidth utilization threshold, and the right
one marks the arithmetic utilization threshold. The red area
upon the left threshold shows memory bound, while the green
area upon the right threshold shows compute bound. The blue
area below the two thresholds represents the underutilization.
The operator’s performance point falling in a specific region
determines its computation bottleneck (Appendix B).

Different computation bottlenecks often have different
causes. When compute bound, Hermes will check whether
the node is downclocked over the threshold (often 5%) or has
poor intrinsic arithmetic. When memory bound, Hermes will
suggest operator fusion [43, 68], quantization [38, 56, 63], or
using memory optimization techniques like ZeRO [51, 52].
In practice, most operators are underutilized due to various
reasons, such as inefficient AICPU operators, operators with
suboptimal hardware affinity with Ascend, or private data
formats causing extra conversion overhead. For all of these,
Hermes has the corresponding detection and optimization
rules. For a more detailed analysis of operator performance,
refer to [69] and the Ascend Optimization Engine [9].
Communication Cause Analysis. As shown in Figure 7, we
analyze the causes of communication bottlenecks using the
AllReduce operator as an example. Its execution consists of
two synchronizations and one transmission. First, it waits
for all devices to complete their computations before start-
ing transmission, and synchronization occurs again after all
devices have finished transmitting. Consequently, both syn-
chronization and transmission can lead to communication
bottlenecks, necessitating a separate analysis of each.

Synchronization analysis examines the wasted time when
a device waits for others to complete. For example, in post-
transmission synchronization2 among n devices, we use Ti to
denote the transmission time of i-th device. As each device
needs to wait for the slowest device to finish its transmission,
we use Tmax = maxn

i=1 Ti to denote the slowest transmission
time. Accordingly, the overall wait time can be modeled as:

Twait =
n

∑
i=1

(Tmax −Ti) = n

(
Tmax −

1
n

n

∑
i=1

Ti

)
= n(Tmax −Tavg)

(1)
2It can be seamlessly extended to synchronization after computation.

Table 3: Communication bottleneck causes.
Cause Reason

Bandwidth Contention
Intra-node bandwidth contention for

parallel computing and communication
RDMA Retransmission Frequent RDMA timeout retransmission

Small Packet Underutilization of bandwidth by small packet
Byte Alignment HCCS data size misalignment

Network Configuration Switch congestion or UDP port hash collisions

In addition, we have total time, where each device needs Tmax
including transmission and wait time, by summing them up,
we obtain:

Ttotal = n ·Tmax, Rwait =
Twait

Ttotal
= 1− Tavg

Tmax
, (2)

where Rwait is the ratio of wasted wait time. We set a threshold
to determine whether slow synchronization is the cause.

Transmission analysis aims to identify the causes affecting
transmission efficiency, including PCIe, HCCS, and RDMA
links. Hermes first confirms whether the link bandwidth meets
the expected threshold. If all links have reached their physical
limit, it will advise users to upgrade the network. Otherwise,
it will detect all the problems summarized in Table 3 to deter-
mine the true cause of the suboptimal bandwidth.
• Bandwidth Contention. The transmission of communica-

tion operators can be affected by computation operators,
particularly due to the bandwidth contention from the intra-
node interconnect (HCCS and PCIe). This problem is
particularly pronounced when memory-intensive opera-
tors, such as MatMul, are executed concurrently. Hermes
monitors whether the communication operator’s intra-node
bandwidth falls below the threshold. If so, it will recom-
mend users to re-schedule operators.

• RDMA Retransmission. For inter-node transmissions,
RDMA retransmissions are a significant cause of band-
width degradation. Hermes compares the RDMA transmis-
sion time of communication operators to a retransmission
threshold (often 4 seconds). If a retransmission occurs, Her-
mes will advise users to verify the retransmission duration
and the network configuration of switches and servers.

• Small Packet. Small packet sizes can lead to multiple trans-
missions, reducing bandwidth utilization. Hermes has de-
termined the packet size thresholds at which each link
reaches its bandwidth limit in practice. Thus, Hermes
checks for an excess of packets much smaller than the
threshold. If found, it will advise increasing the batch size,
gradient fusion [26, 46], or operator fusion.

• Byte Alignment. HCCS communication requires memory
alignment; the data size must be a multiple of 512 bytes to
avoid a drop in the transmission bandwidth. Hermes offers
a byte alignment analysis for communication operators.
It detects operators that do not meet this requirement and
suggests adjusting their data size.

• Network Configuration. Other network misconfigurations



can also seriously affect communication. Hermes sum-
marizes and automatically detects common ones, such as
anomalies in HCCL environment variables, congestion
from switch settings, or UDP port hash conflicts. Unfortu-
nately, if these analyses fail to reveal the problem, manual
intervention is essential.

4.3 Bottleneck Cause-Optimization Match

As of December 2024, we have addressed 223 training per-
formance issues for over 40 clients, identifying 135 key cases
for analysis and summarization. Among these, both CPU and
computation bottlenecks account for over 30%. The former
is often caused by system, hardware, or implementation is-
sues and can be overlooked. The latter is mainly due to poor
operator implementation, insufficient hardware affinity, and
a lack of operator fusion. Based on these cases, we devel-
oped the mstt advisor [6]. By inputting profiling data, it will
automatically identify the bottleneck through hierarchical
bottleneck analysis. As shown in Table 4, the advisor has es-
tablished many analytical rules for each bottleneck cause and
provides all applicable optimization suggestions. Notably, the
optimizations provided by the advisor mainly target hardware-
agnostic bottlenecks, including parallel, CPU, and most com-
munication bottlenecks. These bottlenecks inherently stem
from unified training paradigms and frameworks, allowing
the optimizations to be extended to other hardware platforms.
However, bottlenecks directly tied to Ascend features, such as
AICPU operators, API affinity conflicts, private data formats,
and HCCS byte misalignment, cannot be extended.

In summary, using profiling data as input, the advisor can
automatically generate a complete analysis report in HTML
showing bottlenecks in current training. For example, when
detecting AICPU operators whose execution time exceeds the
threshold, the advisor will output AICPU issues and provide
the following optimization suggestions: (i) Convert the data
type to those supported by AICore. AICPU only executes
operators if their data formats are not supported by AICore.
Therefore, the advisor lists common operators’ supported data
formats on both AICPU and AICore. If the target operator is
on the list, the advisor will recommend that users reformat
the input to AICore compatible type, such as converting the
Mul operator’s input from int16 to int32. (ii) Modify code to
avoid AICPU operators. For AICPU operators that cannot
convert the format, the advisor suggests replacing them with
equivalent operators in AICore or avoiding their use.

5 Case Study

In this section, we provide extensive case studies, including
classic bottlenecks and real-world production problems, to
demonstrate how Hermes guides optimizations.
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Figure 8: I/O analysis and optimization of ResNet50.

5.1 Case Study of Classic Bottlenecks
Here, we present typical optimization cases for I/O, CPU, and
communication bottlenecks, explaining the reasons behind
the optimizations (more cases are in Appendix C and D).

5.1.1 Case Study of I/O Optimization

The single-card ResNet50 model training is an example of
experiencing an I/O bottleneck. As revealed in Figure 8(a),
before optimization, the execution time per step is approxi-
mately 90 ms, with data preparation taking around 72.8 ms,
indicating an I/O bottleneck. Therefore, the advisor performed
a queue-based I/O analysis, where the data distribution in dif-
ferent queues is shown in Figure 8(b). As training begins, the
data, host, and device queues peak in sequence. Over time,
the device and host queues gradually empty, while the data
queue remains full. And the advisor concluded that the I/O
bottleneck was attributed to slow data processing.
Optimization: Based on the suggestion of the mstt advisor,
we found that only one CPU core was active during processing
(num_worker = 1). To address this, we increased the number
of concurrent threads to 12 to better utilize CPU parallelism.
Results: Although the parallelism only increased by 12×,
this optimization enables overlap between data processing
and subsequent NPU computation, allowing the processing
time to be almost completely hidden within the computation
time. As shown in Figure 8(a), the explicit data preparation
time was reduced to 0.25 ms. The step time was reduced to
18.07 ms, achieving a speedup of 5.34×.

5.1.2 Case Study of CPU Optimization

During GPT-3 training on a single node with 8 NPUs, we
observed an average step time of 444.40 ms, accompanied by
significant performance fluctuations, with many steps exceed-
ing 1000 ms and a maximum of 3027.6 ms. Cluster analysis
identified the 153rd step as a major performance degradation,
pinpointing rank-3 NPU as the slowest card. Further bottle-
neck analysis revealed a long non-overlap host time of 130.86
ms, indicating a severe host bottleneck, primarily due to the
excessive execution time of the aten :: mul operator.
Optimization: Hermes analyzed the CPU performance and
found no issues with operator compilation, dispatch, syn-
chronization, garbage collection, or SW/HW configurations.



Table 4: Cause-optimization match.

Bottleneck Cause Optimization Ratio
Parallel Poor Parallelism Auto hybrid parallel [67] / Multi-shard parallel 5.2%

I/O

Slow Data Reading Increase I/O bandwidth / Remote to local storage

8.9%Slow Data Processing
Improve CPU parallelism (num_workers)

Avoid compression formats (zip, tar)
Cancel the taskset process binding [33]

Slow Data Fetching Cache strategy (pin_memory, data prefetcher) [24, 66]

CPU

Operator Complication Replace dynamic shape operators / Disable JIT compilation

37.0%
Operator Dispatch Operator fusion [43, 68] / Eliminate synchronization operations
Garbage Collection Disable gc / Increase gc threshold

CPU Resources Contention Disable other CPU process
Environment Configuration Align software versions / Reduce logging level

Computation

Compute Bound Avoid decreasing computing frequency / Isolate slow nodes

31.9%

Memory Bound Operator fusion [43, 68] / Quantization [38, 56, 63] / ZeRO [51, 52]

Underutilization
Eliminate AICPU operators

Replace operators with affinity APIs
Forbid private format

Communication

Bandwidth Contention Avoid bandwidth contention by re-scheduling operators

17.0%
RDMA Retransmission Adjust RDMA network configurations of switch and server

Small Packet Increase batch size / Gradient fusion [26, 46] / Operator fusion
Byte Alignment Align HCCS data size

Network Configuration HCCL environment variables / Switch congestion control / UDP hashing collision

Table 5: Gradient fusion optimization of VGG16.

Computation (ms)
Non-overlap

Communication (ms) Free (ms) Total (ms)

Before 54.555 21.760 0.177 76.492
After 52.907 3.594 0.139 56.640

Eventually, CPU usage shows that a Prometheus monitoring
program was deployed on this machine, consuming a mas-
sive 4000% of CPU resources. This plugin was originally
intended for the master node but was mistakenly deployed on
the worker node, leading to performance degradation.
Result. After terminating the Prometheus process, the average
step time for GPT-3 training decreased to 374.88 ms, with only
4 of 4989 steps exhibiting performance fluctuations exceeding
10%, marking a significant improvement in stability compared
to the original 128 steps.

5.1.3 Case Study of Communication Optimization

As shown in Table 5, the step time of VGG16 8-card training is
76.492 ms, with the non-overlap AllReduce operators taking
21.760 ms, resulting in a communication bottleneck. Accord-
ing to the synchronization analysis, the maximum value of
Rwait is 0.3 and exceeds the threshold. Therefore, the bottle-
neck is caused by the slow transmission from Rank 7 NPU.
This operator only involves HCCS communication, with a
bandwidth utilization of only 53%. The average size of HCCS
packets is only 12.81 MB, which is too small compared to the
32 MB threshold, resulting in bandwidth underutilization.
Optimization: Faced with this problem, Hermes suggests
using gradient fusion [11] to improve bandwidth utilization,

tail latency

tail latency

fwd bwd allreduce optimizer

BucketSize = 1

BucketSize = 3

Figure 9: Inappropriate bucket size setting.

which fuses the gradients of multiple backward computations.
However, existing frameworks like Pytorch and Horovod [53]
only allow for fixed capacity or manual configuration. As
shown in Figure 9, undersized capacity (BucketSize=1) can-
not improve bandwidth utilization, while oversized capacity
(BucketSize=3) can result in long-tail latency. Thus, we fur-
ther integrate the profiling result to guide our fusion. Specifi-
cally, we simulate the AllReduce fusion for gradients of differ-
ent sizes, which reveals the benefit (time reduction/bandwidth
improvement). In addition, we collect execution information
to predict the tail latency for a given fusion strategy, includ-
ing 1) the size of each gradient, 2) the dependencies between
operators, and 3) the duration of each computation operator.
We model an optimization problem and introduce a greedy
forward search algorithm to find a solution by maximizing
bandwidth and minimizing tail latency. As shown in Figure 10,
we can adaptively fuse the gradients according to the search
algorithm. The details can be found in Appendix E.
Results. After this optimization, the non-overlap communi-
cation time decreased to 3.594 ms, and the step time subse-
quently dropped to 56.64 ms with a 1.35× speedup. In addi-
tion, we also evaluated common vision, NLP, and recommen-
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Figure 11: Speedup of communication optimization.

dation models. Figure 11 shows the speedup of non-overlap
communication and step time before and after optimization.
Specifically, 1) if a small packet size is not the root cause
pinpointing by Hermes, then the corresponding optimization
is limited. DLRM [42] exhibits a limited improvement in Fig-
ure 11(a) because the packet size is large enough. 2) if one
is not identified as a bottleneck by Hermes, then the improve-
ment is limited. For instance, in ResNet50, the optimization
brings a significant reduction in non-overlap communication
in Figure 11(a), but the step time is not significantly improved
in Figure 11(b), since communication is not the bottleneck.

5.2 Case Study of Real-world Model Training

Our practices are conducted on the Ascend training clusters
shown in Appendix A. Here, we present three real-world cases
in diverse task scenarios, sharing our practical insights.

5.2.1 Iterative Optimization Development for PanGu

We present the iterative analysis and optimization by Hermes
on the 100B PanGu-α model training. The process consists
of three iterations corresponding to bottlenecks: (i) compu-
tation, (ii) parallel, and (iii) communication. We can address
these bottlenecks by applying optimization recommendations,
resulting in the 3.05× speedup in the overall training time.
Baseline: The 100 billion parameters PanGu-α language
model is deployed on 128 Ascend NPUs. We selected 50
billion tokens from the original 1.1TB Chinese text corpus
from [65] as the training dataset. The baseline configuration is
from MindSpore’s official SOTA models [4], which employs
a re-computation and hybrid parallelism strategy, with data
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Figure 12: PanGu-α overall training performance, where B
denotes Baseline, O denotes Operator optimization, P denotes
Auto hybrid parallelism, M denotes Multi-shard parallelism,
and G denotes Gradient fusion.
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parallelism is 2, tensor parallelism is 8, and pipeline paral-
lelism is 8. The batch_size is 512, while the micro batch_size
is 32. As shown in Figure 12, the total training time is 2856
hours, achieving a throughput of 4839 tokens/s.
Iteration 1: Computation Bottleneck. In the inter-operator
analysis, the step time consists of three parts: computation
(including overlap), non-overlap communication, and host.
Considering the parallel strategy, non-overlap communication
can be divided into model parallel communication (Send/Re-
ceive) and gradient communication (AllReduce). As shown
in Figure 13, the computation time in the baseline accounts
for a staggering 73.5% of the iteration time. Thus, even with
a satisfactory overlap ratio (8.76%), the computation remains
a bottleneck. According to the intra-operator analysis, the top
10 time-consuming computation operators totally consume
59.59 s, accounting for 83.57% of all computation operators.
Therefore, addressing these operators is our top priority.

Facing the computation bottleneck, we have identified the
primary cause of underutilization by Roofline analysis. Fol-
lowing the suggestions from Hermes, we have adopted opera-
tor optimization, such as replacing high-performance operator,
operator fusion [43], and forbidding private formats to accel-
erate computations. The details can be found in Appendix C.
Based on Figure 12, the operator optimizations reduce the
step time from 98.01 to 48.16 s and the total time from 2,856
to 1,392 hours, a speedup of 2.05×.
Iteration 2: Parallel Bottleneck. After addressing the com-
putation bottleneck, we observed a reduced computation ratio
to a reasonable level of 52.2%. However, we noticed that the
overlap between computation and communication only ac-



counted for 2.66% of the step time. The bottleneck has moved
to a significant parallel bottleneck.

Based on the advice of the advisor, we have adopted two
different optimizations to improve parallelism. (i) Auto hy-
brid parallelism. Encouraged by auto parallelism [67], we
propose the pipeline parallel simulation to identify a more op-
timal parallel configuration. Based on the simulation results,
we find that incremental micro batch_size within a certain
range improves throughput, especially at higher pipeline par-
allelism. Furthermore, if the LayerNorm operator is used for
data parallelism, reducing the tensor parallelism can enhance
computation performance. Consequently, we adjust the paral-
lel configuration by increasing micro batch_size from 32 to
64, setting the pipeline parallelism to 16, and halving the ten-
sor parallelism. By applying the better parallel configuration,
the step time decreased from 48.16 to 42.21 s. (ii) Multi-shard
parallelism. In brief, we divide the task executed within an
NPU into two parallel parts: one for computation and the
other for communication (details in Appendix D). This ap-
proach has improved the overlap ratio and reduced the step
time to 31.94 s. Together, the two optimizations accelerated
the total time from 1,392 to 984 hours, a speedup of 1.41×.
Iteration 3: Communication Bottleneck. After enhanc-
ing the parallelism to 11.19%, we further analyzed the non-
overlap communication, including Send, Receive, AllGather,
and AllReduce. Among these, AllReduce accounts for 46.83%
of the communication time and 22.55% of the step time.
Therefore, we must focus on the communication bottleneck
from AllReduce operators.

Through the communication analysis of AllReduce, Her-
mes has identified that the bottleneck originates from the
small packet. Thus, we applied the adaptive gradient fusion in
§5.1.3 to address it. As depicted in Figure 12 and Figure 13,
the optimization reduced the step time from 31.94 to 26.43 s,
with a 1.05× speedup in total time to 936 hours.

5.2.2 MobileNetv1 Deployment Optimization

The MobileNetv1-SSD [35] vision model is applied to object
detection in autonomous driving. When migrating this model
from an NVIDIA A800 GPU to Ascend NPU directly, users
observed significant performance degradation (only achieved
43% of the former), requiring deployment optimization.

To simplify the analysis, we start with single-card training
to identify bottlenecks in NPUs. In the baseline, the model
already incorporates the hardware-affinity optimizer (Npu-
FusedSGD [8]) and mixed precision optimization [38], achiev-
ing a step time of 73.24 ms and 436.942 FPS (Frame Per Sec-
ond) as shown in Figure 14. Using Hermes for analysis, the
results indicate the presence of significant CPU bottlenecks
and provide the following suggestions.
Disable JIT compilation. Hermes reveals that operator com-
pilation time on the CPU is high, with a total of 762 operators,
which consume a staggering 57.862 ms. This issue stems

primarily from the dynamic shape [48] of operators. If the
input and output shapes of an operator remain constant during
training, enabling JIT compilation allows for fusion optimiza-
tion based on existing operator information, generating more
efficient operators online. However, the dynamic shape will
invalidate prior operator information and bring re-compilation
costs. Thus, the advisor recommends disabling online com-
pilation ( jit_compile = f alse) and dispatching the compiled
binary operators to reduce time. After this, the step time de-
creased to 64.87 ms and the FPS increased to 493.332.
Eliminate synchronization. Secondly, a total of 18 synchro-
nization operations between CPU and NPU were detected,
and the two slowest operations accounted for 24.136 ms. The
frequent synchronizations are often attributed to certain syn-
chronous operators and environment variable settings. Even-
tually, the advisor shows that it is due to the frequent use of
tensor.item(). By replacing this function, we achieved a step
time of 54.82 ms and an FPS of 583.695.
Replace affinity APIs. The advisor suggests that some APIs
can be replaced with more hardware-friendly ones for Ascend.
Specifically, tensor reshape and transpose functions in Py-
Torch like view, permute, transpose, and contiguous can be
replaced with npu_con f usion_transpose [7]. This optimiza-
tion brings a step time of 53.45 ms and an FPS of 598.716.
Unbind CPU process. When scaled up to 8-NPU training, we
observed too high step time in the early steps of each epoch.
Hermes revealed that there is an I/O bottleneck caused by a
slow dataloader with 2857.845 ms, attributed to the taskset
command that binds the CPU. This command is used to bind
a process to specific CPU cores, reducing context-switching
overhead, and improving cache utilization. However, incorrect
CPU binding can cause the dataloader and other processes to
be bound to the same core, resulting in memory bandwidth
contention. Following the advice of the advisor, we unbind
the CPU processes, recovering stabilized 8-NPU training per-
formance. The training time decreased from 11.10 to 5.81
ms (1.91× speedup), and the FPS reached 90% of the GPU’s
performance (5921), meeting the performance goal.
Summary. Table 6 also summarizes the optimization results
in deploying other models. Leveraging the optimization sug-
gestions, we have achieved training speedups ranging from
1.08× to 5.34× for these vision, NLP, and recommendation
models, demonstrating the effectiveness of Hermes.

5.2.3 Performance Fluctuation in Large-scale Training

When training a large model, even minor disturbances can
lead to significant performance fluctuations, such as the de-
crease in MFU within MegaScale [27]. However, pinpointing
the underlying causes is far from straightforward. Similarly,
we frequently encounter performance fluctuations in large-
scale training based on Ascend NPUs. Notably, 25% of our
analyzed performance fluctuation cases were attributed to
Python’s garbage collection (GC) [47]. Here, we use a case



Table 6: Model deployment optimization results

Type Model Parameter Optimization Speedup (-: not optimizable) # of NPUs DatasetI/O CPU Para. Compu. Comm. Total

Vision

ResNet50 25.6M 5.03 - - 1.02 1.04 5.34 8 ImageNet2012VGG16 138.4M - - - 1.08 1.35 1.46

MobileNetV1-SSD 4.2M - 1.37 - - - 1.37 1 VOC20121.08 1.91 - - - 2.07 8

NLP
Bert-Large 330M - - - 1.63 1.38 2.49

8 WikiPanGu-α 1.3B - - - 1.18 1.02 1.20
GPT3-13B 13B - - 1.08 - - 1.08

Recommend DeepFM 16.5M - - - - 1.08 1.08 8 CriteoDLRM 540M - - - - 1.17 1.17
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Figure 15: Performance fluctuations optimization.

study of 9,000-card MoE model training to share our experi-
ence in optimizing garbage collection.

As shown in Figure 15(a), after resuming training from the
checkpoint, the throughput gradually increases to about 60
TFLOPs/s. However, during the 400 training steps, there are
several significant performance fluctuations, dropping to a
low of only 14.0 TFLOPs/s. Each of these drops persists for
several steps, severely impacting overall performance. Bottle-
neck analysis revealed that, within the timeline of the slowest
NPU, the non-overlap host time significantly exceeds that
of other NPUs. Additionally, Hermes offers a GC detection
interface to record its occurrences. The results indicated that
the number of GC events far exceeded the threshold and per-
formance fluctuations occurred whenever the GC was cleared.
If the GCs are not synchronized between each stream, all GCs
will execute sequentially within a step, slowing down training.

Although this issue stems from Python’s GC mechanism
and is currently unresolvable, Hermes provides alternative
solutions to mitigate it. Firstly, disabling GC (gc.disable())
can prevent performance fluctuations but lightly increases
training time (based on experience with 7B Llama-2, the
cost is about 1%). Secondly, by using the set_threshold inter-

face to appropriately increase the threshold, we can reduce
the occurrence of fluctuations (with a cost of only 0.02%).
Given the relatively low cost of the latter, this approach is
commonly adopted in practice. Therefore, we appropriately
increased the GC threshold and implemented periodic calls
to the gc.collect() in the code (typically after saving check-
points). The results of continued training after optimization,
as shown in Figure 15(b), indicate a significant reduction in
performance fluctuations. During the same 400 steps, the av-
erage throughput improved from 53.33 to 56.23 TFLOPs/s
(1.05× speedup).

In addition to software issues, we also detected hardware-
induced performance fluctuations when training models in
the 18,000-card cluster. Training throughput ranged between
10 and 106 TFLOPs/s, with a high variance of 291, and an
average of only 85 TFLOPs/s. Following the recommenda-
tions from Hermes, we made several optimizations, including
switching log writes from remote storage to local storage, re-
pairing four spine-leaf links, and isolating 30 compute nodes
(due to port flapping, NPU memory failures, etc.). After these
optimizations, training throughput stabilized between 63 and
108 TFLOPs/s, with a variance of 31, and the average im-
proved to 101 TFLOPs/s (1.19× speedup).

6 Limitations and Future Work

We discuss the limitations and future directions of Hermes.
More model training techniques. Currently, Hermes is
mainly used to analyze and optimize the training performance
of the Transformer and MoE models. In fact, many new tech-
niques are widely applied in the training of large models such
as ChatGPT and Llama, including reinforcement learning (e.g.
RLHF [15, 45]) and multimodal techniques [61]. However,
Hermes currently cannot effectively analyze and optimize
the bottlenecks introduced by them. For example, in RLHF,
there are potential performance issues in iterative reward
modeling, policy optimization, and environment interaction.
In multimodal models, cross-modal data alignment (such as
image-text fusion) is likely a performance bottleneck. There-
fore, we plan to expand Hermes to support these emerging



model training technologies.
Diagnosing complex bottlenecks. In complex scenarios, it is
still challenging for Hermes to diagnose the causes of bottle-
necks. For example, in MoE model training, when the AlltoAll
communication is severely unbalanced, a simple synchroniza-
tion analysis is not sufficient to accurately determine whether
it is a slow card or slow communication. There are also CPU
bottlenecks caused by external environmental changes, which
heavily rely on our current troubleshooting experience, cur-
rently limited to common monitoring software. As parallel
strategies become more complex, including not only DP, PP,
and TP but also expert parallelism and context parallelism,
how to more accurately identify slow and fast cards becomes
a challenge. Therefore, our goal is to improve Hermes’s abil-
ity to handle these complex situations, provide visualization
functions, and more accurately identify bottlenecks.
Evolving cause-optimization mapping. Hermes has summa-
rized the causes of bottlenecks and optimization mappings
(Table 4) based on 135 actual cases, which already cover
most of the bottlenecks and optimizations. However, it is fore-
seeable that new model training technologies and changing
runtime environments will introduce new bottlenecks, and
the corresponding new optimization techniques will continue
to emerge. The existing mappings of Hermes cannot meet
the needs and need to be continuously updated. In addition,
we plan to move beyond rule-based heuristics by integrating
training logs and even LLM-based agents to assist in more
accurate root cause analysis and optimization suggestions.

7 Related Work

Performance Profiling. The most convenient way for users
to obtain training performance is the built-in profiler of frame-
works, such as PyTorch Profiler [50]. These profilers mainly
collect information on specific operations within the training
framework (e.g., execution time), but their support for hard-
ware profiling is relatively limited (e.g., only GPU utilization
and estimated SM efficiency). Furthermore, system-level per-
formance analysis tools, such as Nsight Systems [44] for
NVIDIA GPUs, not only provide detailed profiling metrics
at the GPU kernel level but also capture the execution and re-
source utilization of the entire system in real-time, including
CPU, GPU, NIC, and storage. However, with the popularity
of large-scale training, frequent performance fluctuations [27]
and the huge cost of long-term monitoring make it difficult
for a single profiling tool to meet demand. In contrast, Her-
mes not only takes into account the architectural features of
Ascend but also implements lightweight and online profiling
similar to the Llama-3 training [17].
Bottleneck Analysis. After obtaining profiling data, users
often need to manually identify bottlenecks based on their
own experience. Although there are some automated analy-
sis tools, they only target specific types of bottlenecks. For
example, PRESTO [24] only focuses on I/O bottlenecks,

SketchDLC [62] only focuses on communication bottlenecks,
and some works [19, 34] only focus on RDMA bottlenecks.
Even the most powerful Nsight System [44], which provides
Expert Systems Analysis to automatically discover perfor-
mance issues, only covers six rules, such as CUDA syn-
chronous operation and low GPU utilization. In comparison,
Hermes covers a wide range of common bottlenecks, not only
saving a lot of time but also considering the relationships
between different bottlenecks to find the real causes.
Training Optimization. Numerous optimizations have been
developed to tackle the corresponding training bottlenecks.
For example, PRESTO [24] accelerates data preparation by
balancing storage capacity and I/O throughput. Mixed preci-
sion operation [38] speeds up the computation by reducing the
input through compression. Schedulers such as ByteSched-
uler [46] enhance communication efficiency by controlling
tensor splitting and fusion. Hybrid parallelism [57] and auto
parallelism [25, 67] achieve a better overlap of computation
and communication. When facing bottlenecks, it is also chal-
lenging to choose appropriate optimizations. Although tools
such as DayDream [70] and dPRO [22] can predict optimiza-
tion effects based on task dependencies, they are limited to
data-parallel scenarios. The Expert Analysis of Nsight Sys-
tem [44] also provides only optimization suggestions for six
rules. In contrast, Hermes can offer comprehensive optimiza-
tion suggestions based on the root causes of bottlenecks.

8 Conclusion

In conclusion, Hermes addresses the critical issues of per-
formance fluctuation detection, bottleneck analysis, and opti-
mization strategy recommendation. By offering a lightweight
profiler, a thorough hierarchical analysis framework, and
matching bottleneck causes with optimizations, Hermes al-
lows efficient training optimization. Our real-world case stud-
ies demonstrate the effectiveness of Hermes, leading to sub-
stantial improvements in training speed and stability. We be-
lieve that our insights from Hermes will help the community
toward more efficient and stable large-scale model training.

Acknowledgments

The authors thank the shepherd, Yang Wang, and the anony-
mous reviewers for their insightful comments. This work was
supported by the Key Program of the Natural Science Foun-
dation of Jiangsu Province under Grant No. BK20243053, the
National Natural Science Foundation of China under Grant
Numbers 62325205 and 62172204, the National Natural Sci-
ence Fund for the Excellent Young Scientists Fund Program
(Overseas), the Nanjing University-China Mobile Communi-
cations Group Co., Ltd. Joint Institute, and the Postgraduate
Research & Practice Innovation Program of Jiangsu Province.



References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. Tensorflow: A system for large-
scale machine learning. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’16, page 265–283, USA, 2016.
USENIX Association.

[2] Ascend. Ascend pytorch adapter, Jan 2024. https:
//gitee.com/ascend/pytorch.

[3] Ascend. Cann: Compute architecture for neural net-
works, 2024. https://www.hiascend.com/en/software/
cann.

[4] Ascend. Mindspore modelzoo, 2024. https://gitee.
com/mindspore/models/blob/master/README.md.

[5] Ascend. Mindstudio insight, 2024. https:
//www.hiascend.com/document/detail/en/mindstudio/
600/msug/msug_000212.html.

[6] Ascend. Mindstudio training tools, 2024.
https://gitee.com/ascend/mstt/tree/master/
profiler/msprof_analyze/advisor.

[7] Ascend. torch_npu.npu_confusion_transpose, 2024.
https://www.hiascend.com/document/detail/en/
canncommercial/700/modeldevpt/ptmigr/ptaoplist_
000638.html.

[8] Ascend. torch_npu.optim.npufusedsgd, 2024.
https://www.hiascend.com/document/detail/en/
canncommercial/700/modeldevpt/ptmigr/ptaoplist_
000776.html.

[9] Ascend. Ascend optimization engine.
https://www.hiascend.com/document/detail/
zh/CANNCommunityEdition/800alpha002/devaids/
devtools/aoe/aoeep_16_001.html, dec 2025.

[10] Ascend. Huawei collective communication library, 2025.
https://gitee.com/ascend/cann-hccl.

[11] Horovod authors. Tensor fusion. https:
//horovod.readthedocs.io/en/stable/tensor-fusion_
include.html, 2019.

[12] Erik Cambria and Bebo White. Jumping nlp curves: A
review of natural language processing research. IEEE
Computational intelligence magazine, 9(2):48–57, 2014.

[13] Li-Wen Chang, Wenlei Bao, Qi Hou, Chengquan
Jiang, Ningxin Zheng, Yinmin Zhong, Xuanrun Zhang,
Zuquan Song, Chengji Yao, Ziheng Jiang, Haibin Lin,
Xin Jin, and Xin Liu. Flux: Fast software-based commu-
nication overlap on gpus through kernel fusion, 2024.

[14] Chang Chen, Xiuhong Li, Qianchao Zhu, Jiangfei Duan,
Peng Sun, Xingcheng Zhang, and Chao Yang. Cen-
tauri: Enabling efficient scheduling for communication-
computation overlap in large model training via commu-
nication partitioning. In Proceedings of the 29th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, Vol-
ume 3, ASPLOS ’24, page 178–191, New York, NY,
USA, 2024. Association for Computing Machinery.

[15] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic,
Shane Legg, and Dario Amodei. Deep reinforcement
learning from human preferences. Advances in neural
information processing systems, 30, 2017.

[16] Chrome. The trace event profiling tool (about:tracing),
2024. https://www.chromium.org/developers/
how-tos/trace-event-profiling-tool/.

[17] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

[18] The Linux Foundation. Prometheus. https:
//prometheus.io/docs/introduction/overview/, dec
2025.

[19] Adithya Gangidi, Rui Miao, Shengbao Zheng,
Sai Jayesh Bondu, Guilherme Goes, Hany Morsy, Rohit
Puri, Mohammad Riftadi, Ashmitha Jeevaraj Shetty,
Jingyi Yang, et al. Rdma over ethernet for distributed
training at meta scale. In Proceedings of the ACM
SIGCOMM 2024 Conference, pages 57–70, 2024.

[20] Wan-Rong Gao, Jian-Bin Fang, Chun Huang, Chuan-Fu
Xu, and Zheng Wang. Wrbench: comparing cache archi-
tectures and coherency protocols on armv8 many-core
systems. Journal of Computer Science and Technology,
38(6):1323–1338, 2023.

[21] Google. Tensorboard, 2024. https://www.tensorflow.
org/tensorboard.

[22] Hanpeng Hu, Chenyu Jiang, Yuchen Zhong, Yanghua
Peng, Chuan Wu, Yibo Zhu, Haibin Lin, and Chuanx-
iong Guo. dpro: A generic performance diagnosis and
optimization toolkit for expediting distributed dnn train-
ing. Proceedings of Machine Learning and Systems,
4:623–637, 2022.

https://gitee.com/ascend/pytorch
https://gitee.com/ascend/pytorch
https://www.hiascend.com/en/software/cann
https://www.hiascend.com/en/software/cann
https://gitee.com/mindspore/models/blob/master/README.md
https://gitee.com/mindspore/models/blob/master/README.md
https://www.hiascend.com/document/detail/en/mindstudio/600/msug/msug_000212.html
https://www.hiascend.com/document/detail/en/mindstudio/600/msug/msug_000212.html
https://www.hiascend.com/document/detail/en/mindstudio/600/msug/msug_000212.html
https://gitee.com/ascend/mstt/tree/master/profiler/msprof_analyze/advisor
https://gitee.com/ascend/mstt/tree/master/profiler/msprof_analyze/advisor
https://www.hiascend.com/document/detail/en/canncommercial/700/modeldevpt/ptmigr/ptaoplist_000638.html
https://www.hiascend.com/document/detail/en/canncommercial/700/modeldevpt/ptmigr/ptaoplist_000638.html
https://www.hiascend.com/document/detail/en/canncommercial/700/modeldevpt/ptmigr/ptaoplist_000638.html
https://www.hiascend.com/document/detail/en/canncommercial/700/modeldevpt/ptmigr/ptaoplist_000776.html
https://www.hiascend.com/document/detail/en/canncommercial/700/modeldevpt/ptmigr/ptaoplist_000776.html
https://www.hiascend.com/document/detail/en/canncommercial/700/modeldevpt/ptmigr/ptaoplist_000776.html
https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/800alpha002/devaids/devtools/aoe/aoeep_16_001.html
https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/800alpha002/devaids/devtools/aoe/aoeep_16_001.html
https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/800alpha002/devaids/devtools/aoe/aoeep_16_001.html
https://gitee.com/ascend/cann-hccl
https://horovod.readthedocs.io/en/stable/tensor-fusion_include.html
https://horovod.readthedocs.io/en/stable/tensor-fusion_include.html
https://horovod.readthedocs.io/en/stable/tensor-fusion_include.html
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool/
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://www.tensorflow.org/tensorboard
https://www.tensorflow.org/tensorboard


[23] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan
Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Effi-
cient training of giant neural networks using pipeline
parallelism. Advances in neural information processing
systems, 32, 2019.

[24] Alexander Isenko, Ruben Mayer, Jeffrey Jedele, and
Hans-Arno Jacobsen. Where is my training bottle-
neck? hidden trade-offs in deep learning preprocessing
pipelines. In Proceedings of the 2022 International Con-
ference on Management of Data, SIGMOD ’22, page
1825–1839, New York, NY, USA, 2022. Association for
Computing Machinery.

[25] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond
data and model parallelism for deep neural networks.
In A. Talwalkar, V. Smith, and M. Zaharia, editors, Pro-
ceedings of Machine Learning and Systems, volume 1,
pages 1–13, 2019.

[26] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong
Cui, and Chuanxiong Guo. A unified architecture for
accelerating distributed DNN training in heterogeneous
GPU/CPU clusters. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 463–479. USENIX Association, November
2020.

[27] Ziheng Jiang, Haibin Lin, Yinmin Zhong, Qi Huang,
Yangrui Chen, Zhi Zhang, Yanghua Peng, Xiang Li,
Cong Xie, Shibiao Nong, et al. Megascale: Scaling
large language model training to more than 10,000 gpus.
In 21st USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 24), pages 745–760,
2024.

[28] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edison
Gao, Wiktor Kuropatwa, Joe O’Neill, Kian Win Ong,
Bill Schaller, Pingjia Shan, Brendan Viscomi, Vinod
Venkataraman, Kaushik Veeraraghavan, and Yee Jiun
Song. Canopy: An end-to-end performance tracing and
analysis system. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles, SOSP ’17, page
34–50, New York, NY, USA, 2017. Association for Com-
puting Machinery.

[29] James E. Kelley. Critical-path planning and scheduling:
Mathematical basis. Oper. Res., 9(3):296–320, jun 1961.

[30] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar,
Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith,
Brian Vaughan, Pritam Damania, and Soumith Chin-
tala. Pytorch distributed: Experiences on acceler-
ating data parallel training. Proc. VLDB Endow.,
13(12):3005–3018, aug 2020.

[31] Heng Liao, Jiajin Tu, Jing Xia, Hu Liu, Xiping Zhou,
Honghui Yuan, and Yuxing Hu. Ascend: a scalable and
unified architecture for ubiquitous deep neural network
computing : Industry track paper. In 2021 IEEE Inter-
national Symposium on High-Performance Computer
Architecture (HPCA), pages 789–801, 2021.

[32] Junyang Lin, An Yang, Jinze Bai, Chang Zhou, Le Jiang,
Xianyan Jia, Ang Wang, Jie Zhang, Yong Li, Wei Lin,
Jingren Zhou, and Hongxia Yang. M6-10t: A sharing-
delinking paradigm for efficient multi-trillion parameter
pretraining, 2021.

[33] Linux. Taskset manual, 2024. https://www.linux.org/
docs/man1/taskset.html.

[34] Kefei Liu, Zhuo Jiang, Jiao Zhang, Shixian Guo, Xuan
Zhang, Yangyang Bai, Yongbin Dong, Feng Luo, Zhang
Zhang, Lei Wang, et al. R-pingmesh: A service-aware
roce network monitoring and diagnostic system. In
Proceedings of the ACM SIGCOMM 2024 Conference,
pages 554–567, 2024.

[35] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In Com-
puter Vision–ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11–14, 2016, Pro-
ceedings, Part I 14, pages 21–37. Springer, 2016.

[36] Guandong Lu, Runzhe Chen, Yakai Wang, Yangjie Zhou,
Rui Zhang, Zheng Hu, Yanming Miao, Zhifang Cai,
Li Li, Jingwen Leng, et al. Distsim: A performance
model of large-scale hybrid distributed dnn training.
arXiv preprint arXiv:2306.08423, 2023.

[37] Kshiteej Mahajan, Ching-Hsiang Chu, Srinivas Sridha-
ran, and Aditya Akella. Better together: Jointly optimiz-
ing ML collective scheduling and execution planning
using SYNDICATE. In 20th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
23), pages 809–824, Boston, MA, April 2023. USENIX
Association.

[38] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gre-
gory Diamos, Erich Elsen, David Garcia, Boris Ginsburg,
Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh,
and Hao Wu. Mixed precision training. In International
Conference on Learning Representations, 2018.

[39] MindSpore. Mindspore, Jan 2024. https://www.
mindspore.cn/en.

[40] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R. Devanur, Gregory R. Ganger,
Phillip B. Gibbons, and Matei Zaharia. Pipedream: Gen-
eralized pipeline parallelism for dnn training. In Pro-
ceedings of the 27th ACM Symposium on Operating

https://www.linux.org/docs/man1/taskset.html
https://www.linux.org/docs/man1/taskset.html
https://www.mindspore.cn/en
https://www.mindspore.cn/en


Systems Principles, SOSP ’19, page 1–15, New York,
NY, USA, 2019. Association for Computing Machinery.

[41] Deepak Narayanan, Mohammad Shoeybi, Jared Casper,
Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti,
Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer,
Bryan Catanzaro, Amar Phanishayee, and Matei Zaharia.
Efficient large-scale language model training on gpu
clusters using megatron-lm. In Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’21, New York,
NY, USA, 2021. Association for Computing Machinery.

[42] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael
Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo
Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu,
Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey
Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman
Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko,
Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay
Rao, Bill Jia, Liang Xiong, and Misha Smelyanskiy.
Deep learning recommendation model for personaliza-
tion and recommendation systems, 2019.

[43] Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal,
and Bin Ren. Dnnfusion: Accelerating deep neural
networks execution with advanced operator fusion. In
Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Im-
plementation, PLDI 2021, page 883–898, New York,
NY, USA, 2021. Association for Computing Machinery.

[44] Nvidia. Nvidia nsight systems, 2024. https://
developer.nvidia.com/nsight-systems.

[45] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
Training language models to follow instructions with
human feedback. Advances in neural information pro-
cessing systems, 35:27730–27744, 2022.

[46] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,
Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong Guo.
A generic communication scheduler for distributed dnn
training acceleration. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP ’19,
page 16–29, New York, NY, USA, 2019. Association
for Computing Machinery.

[47] Python. gc — garbage collector interface, 2024. https:
//docs.python.org/3/library/gc.html.

[48] Pytorch. Dynamic shapes, 2024. https://pytorch.org/
docs/stable/torch.compiler_dynamic_shapes.html.

[49] Pytorch. Jit, 2024. https://residentmario.github.io/
pytorch-training-performance-guide/jit.html.

[50] Pytorch. Pytroch profiler, 2024. https://pytorch.org/
tutorials/recipes/recipes/profiler_recipe.html.

[51] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and
Yuxiong He. Zero: Memory optimizations toward train-
ing trillion parameter models. In Proceedings of the
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC ’20. IEEE
Press, 2020.

[52] Jie Ren, Samyam Rajbhandari, Reza Yazdani Am-
inabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
Zhang, Dong Li, and Yuxiong He. ZeRO-Offload: De-
mocratizing Billion-Scale model training. In 2021
USENIX Annual Technical Conference (USENIX ATC
21), pages 551–564. USENIX Association, July 2021.

[53] Alexander Sergeev and Mike Del Balso. Horovod: fast
and easy distributed deep learning in tensorflow. arXiv
preprint arXiv:1802.05799, 2018.

[54] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter lan-
guage models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

[55] Chunqiang Tang, Thawan Kooburat, Pradeep Venkat-
achalam, Akshay Chander, Zhe Wen, Aravind
Narayanan, Patrick Dowell, and Robert Karl. Holistic
configuration management at facebook. In Proceedings
of the 25th Symposium on Operating Systems Principles,
SOSP ’15, page 328–343, New York, NY, USA, 2015.
Association for Computing Machinery.

[56] Stefan Uhlich, Lukas Mauch, Fabien Cardinaux, Kazuki
Yoshiyama, Javier Alonso Garcia, Stephen Tiedemann,
Thomas Kemp, and Akira Nakamura. Mixed precision
dnns: All you need is a good parametrization. arXiv
preprint arXiv:1905.11452, 2019.

[57] Minjie Wang, Chien chin Huang, and Jinyang Li. Unify-
ing data, model and hybrid parallelism in deep learning
via tensor tiling, 2018.

[58] Shibo Wang, Jinliang Wei, Amit Sabne, Andy
Davis, Berkin Ilbeyi, Blake Hechtman, Dehao Chen,
Karthik Srinivasa Murthy, Marcello Maggioni, Qiao
Zhang, Sameer Kumar, Tongfei Guo, Yuanzhong Xu,
and Zongwei Zhou. Overlap communication with
dependent computation via decomposition in large
deep learning models. In Proceedings of the 28th ACM
International Conference on Architectural Support
for Programming Languages and Operating Systems,
Volume 1, ASPLOS 2023, page 93–106, New York, NY,
USA, 2022. Association for Computing Machinery.

https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://docs.python.org/3/library/gc.html
https://docs.python.org/3/library/gc.html
https://pytorch.org/docs/stable/torch.compiler_dynamic_shapes.html
https://pytorch.org/docs/stable/torch.compiler_dynamic_shapes.html
https://residentmario.github.io/pytorch-training-performance-guide/jit.html
https://residentmario.github.io/pytorch-training-performance-guide/jit.html
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html


[59] Samuel Williams, Andrew Waterman, and David Pat-
terson. Roofline: An insightful visual performance
model for multicore architectures. Commun. ACM,
52(4):65–76, apr 2009.

[60] BigScience Workshop, :, Teven Le Scao, Angela Fan,
Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel
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Figure 16: AI computing node topology.

Table 7: Per-node specification.

CPU Compute (TOPs) 1.96 (FP64) / 3.92 (FP32)
NPU Compute (TFLOPs) 2048 (FP16) / 4096 (INT8)
HBM 256 GB
DDR 2 TB
HCCS bandwidth 32 GB/s (uni-directional)
PCIe bandwidth 30 GB/s (uni-directional)
Network bandwidth 8 × 100 Gbps

A Environment details

Figure 16 shows the topology of the Ascend AI computing
cluster in our experiments. Each cluster contains 16 NPU
Pods, which are interconnected through high-speed aggrega-
tion switches. Each NPU pod comprises 8 AI compute nodes
interconnected via high-speed access switches. In the single-
node topology, every four NPUs are interconnected via HCCS,
forming an intra-node cluster with a unidirectional bandwidth
of 30 GB/s. The intra-node cluster and NPUs are connected to
the CPUs through PCIe 4.0 with a unidirectional bandwidth
of 32 GB/s. Each NPU has a 100G RoCE v2 direct outboard
network port to establish interconnections with NPUs in other
nodes.

Table 7 summarizes the aggregated capabilities of a single
node with 4 CPUs and 8 NPUs. The 8 NPUs can provide
2048 FLOPs of half-precision peak computing power, 4096
TOPs of integer-precision peak computing power, and 256
GB of HBM. The four CPUs offer a total of 1.96 TOPs of
single-precision peak computing power and 3.92 TOPs of
double-precision peak computing power and share 2 TB of
DDR4.0 general-purpose memory.

B Roofline Analysis

We define compute Arithmetic Utilization Uarithmetic(Memory
Bandwidth Utilization Umemory) to measure the ratio of actual
computational performance Pactual (bandwidth Bactual) to peak
performance Ppeak (bandwidth Bpeak). A utilization threshold
Uthreshold is first established based on practical experience to
delineate underutilization. This leads to the establishment of
performance threshold Pthreshold =Uthreshold ∗Ppeak and band-
width threshold Bthreshold = Uthreshold ∗Bpeak. We then intro-

duce the following classification function.

f (Pactual,Bactual)=



memory bound, if AIactual ≤ AInecessary

and Bactual ≥ Bthreshold,

compute bound, if AIactual > AInecessary

and Pactual ≥ Pthreshold,

underutilization, otherwise.
(3)

Following the roofline model, we use AInecessary = Ppeak/Bpeak
in ridge point to classify the memory bound and compute
bound. Operators that fail to meet either memory or compute
thresholds fall into the underutilization category.

Referring back to Figure 6, the height of the line reflects
the compute performance, while the slope of the line reflects
the memory bandwidth. To visualize thresholds, two dashed
lines can be added: the left line for Bthreshold and the right line
for Pthreshold. The area between these two threshold lines is
shaded blue in the figure, marking the underutilization zone.

C Case Study of Computation Optimization

In 100B PanGu-α, the top 10 time-consuming computation
operators mainly include MatMul/BatchMatMul, format con-
version operators (TransData and Cast), and element-wise
operators (Mul and Add). The roofline analysis shows that
61.48% of the bottlenecks were underutilized, while 34.02%
were memory-bound, with compute-bound only 4.50%.
Optimization: For the underutilized operators, we chose
the following optimization. 1) FastGeLU. We replace the
inefficient GeLU operator with FastGeLU, which is a high-
performance operator. 2) Operator Fusion. We fuse ineffi-
cient element-wise operators such as Mul and Add into the
LayerNorm operator, which is suitable for parallel accelera-
tion. We can also perform fusion on time-consuming MatMul
operators, such as FastGeLU with MatMul or BatchMatMul
with Add. 3) Format Conversion: Ascend’s matrix compute
unit (Cube [31]) only supports private formats (Appendix
F), while tensor inputs often do not, leading to frequent for-
mat conversions during training. So we defaulted to using
the private format to reduce the need for format conversion
operators.
Results. After the optimizations, the computation time per
step decreased from 72.31 s to 25.16 s. Specifically, regarding
the distribution of computation bottlenecks, the ratio of un-
derutilized operators decreased to 46.32%, and most of them
shifted to the memory-bound.

D Case Study of Parallel Optimization

Taking the GPT3-13B model with 8-card 8-way tensor par-
allel training as an example, as shown in Figure 17(a), the
single step time is 890.92 ms, ’Host’, ’Comp’ and ’Comm’
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Figure 17: New optimization for parallel bottleneck.

are non-overlapping parts. The multi-component parallel anal-
ysis shows that the overlap time between computation and
communication is only 38.149 ms, suggesting a parallel bot-
tleneck.
Optimization: Inspired by finer-grained parallelism [14, 58],
we propose the multi-shard parallel strategy to divide the
computation and communication tasks within the same NPU,
further enhancing the overlap. According to Figure 17(a), the
computation and communication tasks are sequential and in-
dependently executed in the origin training, resulting in only
one component being utilized while the other is idle. Our
optimization tries to parallelize the computation and commu-
nication components by splitting the task along the batch_size
dimension into two shorter tasks. Within the same device, one
task focuses on communication, while the other performs
computation. Moreover, increasing the number of partitions
can theoretically achieve higher parallelism, but it also intro-
duces additional overhead, which is a trade-off. Notice that
multi-shard parallelism can be used as a standalone parallel
strategy or combined with others like tensor parallelism.
Results: During tensor parallelism, AllReduce (AllGather
and ReduceScatter) communication is typically involved be-
fore and after the computation of the self-attention and linear
layers [54], which is consistent with multi-shard parallelism.
As shown in Figure 17(a), we evaluated with shard numbers 2,
4, and 8. When num=2 or 4, the overlap time ratio increases,
resulting in more overlapped computation and communica-
tion, and the step time decreases to 860.46 ms (1.04×) and
821.375 ms (1.08×), respectively. Surprisingly, when num=8,
although the overlap time continues to increase, the step time
increases instead of decreasing, reaching 933.968 ms. The
reasons include the total computation time exceeding the com-
putation time of the original task after partitioning, and the
additional communication overhead. Therefore, we should
better keep the number of partitions within a small range.

E Adaptive Gradient Fusion

Actually, the dual problem of fusion is how to segment a se-
quence of gradient synchronization operators. The origin is
equal to that each operator constitutes a segment. Formally,

we have a sequence of operator O = [o1,o2, . . . ,on]. For the
operator oi, we use vi to denote the volume of gradients. As
the gradients for the synchronization operator oi will be gen-
erated from the corresponding computation operator, we use
dcompute,i to denote the corresponding duration time of com-
putation. The segmentation is defined as S = [S1,S2, . . . ,Sn]
where Si = [ol ,ol+1,or] denotes a segment of the operator
sequence. The optimization problem can be formulated as:

argmin
S

ecomm,m

s.t. S1 ∪S2 ∪·· ·∪Sm = O,

∀1 ≤ i < j ≤ m, Si ∩S j = /0,

(4)

where ecomm,m denotes that the communication end time of
m-th fused gradients. The end time of i-th fused gradients can
be obtained from the following recursive equation:

ecompute,1 = ∑
oi∈S1

dcompute,i

ecomm,1 = ecompute,1 + f

(
∑

oi∈S1

vi

)
,

ecompute,k = ecompute,k−1 + ∑
oi∈Sk

dcompute,i

ecomm,k = max
(
ecompute,k,ecomm,k−1

)
+ f

(
∑

oi∈Sk

vi

)
,

(5)

where f : R → R maps volume to communication time ac-
cording to our benchmark.

Forward search fusion is illustrated in Figure 10. Once the
gradient computation is completed, the current AllReduce
operator starts executing. At the same time, the next gradi-
ent computation continues until it is completed, triggering
the next AllReduce. The algorithm aims to merge as many
AllReduce operators as possible without increasing the over-
all communication time. The process begins by attempting to
fuse the first and second AllReduce operators. It calculates
the end time of the fused AllReduce and compares it with the
start time of the next one. If the end time does not exceed the
start time, the fusion is successful, and the fused operator is
included in the strategy. Conversely, when attempting to fuse
the third and fourth AllReduce operators, the end time of the
fused operator exceeds the start time of the next AllReduce.
Therefore, the fusion is abandoned, and the current operator is
added to the strategy. This process is repeated, and ultimately,
all the fused AllReduce operators are obtained.

F Private Data format

ND and NZ formats are common data formats in Ascend
chips. The former is the arbitrary format that supports ex-
officio Tensor data storage. It defaults to the NCHW format
in Pytorch and MindSpore, while it defaults to the NHWC
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format in Tensorflow, where N is the batch size, C is the num-
ber of input channels, and H and W are the sizes of the input
feature maps. Figure 18 shows a schematic of this data format
and the mapping of its logical arrangement to its physical
arrangement in memory.

The NZ format (FRACTAL_NZ) is an Ascend-specific
fractal format, such as the data storage of featuremap. The
data format, as shown in Figure 19 of the output matrix, is
NW1H1H0W0 during cube unit calculation. The whole ma-
trix is divided into (H1 ∗W1) fractals, which are arranged
according to column-major and have the shape of N, and
(H0∗W0) elements inside each fractal, which are arranged
according to row-major and have the shape of z. Considering
the format of the data layout, the NW1H1H0W0 data format
is called the Nz format, where H0 and W0 indicate the size
of a fractal.
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