
Sectric: Towards Accurate, Privacy-preserving and Efficient
Triangle Counting

Minze Xu

State Key Laboratory for Novel

Software Technology

Nanjing University

cnmzxu@gmail.com

Zhentai Xie

State Key Laboratory for Novel

Software Technology

Nanjing University

zhentaixie@smail.nju.edu.cn

Zhibin Wang

State Key Laboratory for Novel

Software Technology

Nanjing University

wzbwangzhibin@gmail.com

Guangzhan Wang

State Key Laboratory for Novel

Software Technology

Nanjing University

502023330057@smail.nju.edu.cn

Longbin Lai

Alibaba Group

longbin.lailb@alibaba-inc.com

Yuan Zhang

State Key Laboratory for Novel

Software Technology

Nanjing University

zhangyuan@nju.edu.cn

Chen Tian

State Key Laboratory for Novel

Software Technology

Nanjing University

tianchen@nju.edu.cn

Sheng Zhong

State Key Laboratory for Novel

Software Technology

Nanjing University

zhongsheng@nju.edu.cn

ABSTRACT
Graph data analysis, particularly local triangle counting, plays a

pivotal role in deciphering complex relationships within graph data.

This method is invaluable across diverse fields such as social net-

works, transportation, and cybersecurity. However, this process

often involves handling sensitive information, necessitating that

the relationship between any two nodes is considered private. Dif-

ferential privacy (DP) is a formal model to address privacy concerns

and can be categorized into two types: the central DP (CDP) model,

which achieves better result accuracy, and the local DP (LDP) model,

which does not assume a trusted server. To bridge the gap between

the two models, we propose Sectric, a server-aided crypto-assisted

local triangle counting protocol, in this paper. It can achieve the

same result accuracy with the same privacy budget as the CDP

model without assuming a trusted server. Sectric also explores a

new approach in crypto-assisted graph data analysis algorithms

that represents a node’s neighbors using a set instead of an adja-

cency vector, and successfully achieves higher efficiency compared

to other crypto-assisted solutions. We also conduct theoretical and

empirical evaluations to demonstrate that Sectric achieves the de-
sign principles.

PVLDB Reference Format:
Minze Xu, Zhentai Xie, Zhibin Wang, Guangzhan Wang, Longbin Lai, Yuan

Zhang, Chen Tian, and Sheng Zhong. Sectric: Towards Accurate,

Privacy-preserving and Efficient Triangle Counting. PVLDB, 18(10): 3382 -

3395, 2025.

doi:10.14778/3748191.3748202

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 10 ISSN 2150-8097.

doi:10.14778/3748191.3748202

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/zhentaixie/Sectric.

1 INTRODUCTION
Graph data analysis is pivotal in unraveling complex relationships

and patterns in graph data, making it a useful tool in various fields

such as social networks [3, 10, 24, 38], transportation and logis-

tics [30, 41, 50, 59], and cybersecurity [25, 61, 62]. In many applica-

tions, graph data are stored in a decentralized manner [5, 31], where

each node knows its neighbors, while no central node has the full

graph topology. In this setting, local triangle counting, which calcu-

lates the triangle counts containing a given node, is a fundamental

graph analysis task. It is widely applied to tasks such as commu-

nity detection, node importance evaluation, and network structure

analysis [1, 6, 16, 32, 38, 45, 56, 57], all of which are relevant for

applications like recommendation systems and fraud detection. We

list some downstream tasks of local triangle counting in Table 1.

Privacy is another concern in the decentralized setting. In the

broader trend of federated graph analytics, where users may wish

to participate in collaborative computation without revealing their

full neighborhood. This reflects increasing demand for privacy-

aware computation models, particularly in regulated industries

(e.g., financial networks, healthcare). Differential privacy (DP) is a

formal model addressing this privacy concern. Prior differentially

private solutions can bemainly categorized into two types: adapting

the central DP (CDP) model or the local DP model (LDP). The CDP

model assumes a trusted server to calculate the triangle counts and

adds a small noise to the final result
1
. The LDP model eliminates

the trust assumption on the server, but has to add more noise in the

1
In the CDP model, the server knows the complete and accurate topology of the graph,

including all nodes and the connection edges to their neighbors.

https://doi.org/10.14778/3748191.3748202
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3748191.3748202
https://github.com/zhentaixie/Sectric

Table 1: Downstream tasks of local triangle counting.

Downstream tasks Related works Applications

Local Clustering Coefficient [6, 19, 58] Spam detection

Weighted Community Clustering [52, 63] Community Detection

K-Truss Decomposition [26, 53] Community Detection

Triangle Centrality Measures [7, 13] Node Importance Evaluation

calculating process with the same privacy budget. Thus, the CDP

model has better result accuracy, and the LDP model aligns better

with the decentralized setting.

To bridge the gap between the two models, we notice the emerg-

ing crypto-assisted approach in other graph analysis tasks [35, 54]

and explore its application in privacy-preserving local triangle

counting. This approach makes graph nodes interact with graph

nodes using cryptographic primitives to finally obtain the analysis

result. Compared to the LDP model, the crypto-assisted approach

provides crypto-level privacy protection and has an accurate analy-

sis result due to the use of cryptographic tools.

Following this framework, we design Sectric, a server-aided

crypto-assisted triangle counting protocol. The first challenge we

meet is the high overheads incurred by directly applying exist-

ing techniques. For example, if we directly adapt techniques from

CARGO [35] or MAGO [54] to privacy-preserving local triangle

counting, it will bring 𝑂 (|V|2) overheads(|V| denotes the num-

ber of graph nodes), which are unsatisfactory on large graphs. We

observe that the root of the high overheads lies in operating on

the graph’s adjacency matrix. To reduce the overheads, we explore

the usage of adjacency sets, instead of adjacency vectors, to repre-

sent node adjacencies. To implement this idea, we design a novel

cryptographic tool named Three-Party Private Set Membership Test
(3PPSMT), rather than using secret sharing as CARGO and MAGO.

This primitive reduces the overheads of counting two graph nodes’

common neighbors from 𝑂 (|V|) to 𝑂 (𝑑𝑚𝑎𝑥) compared to secret

sharing(𝑑𝑚𝑎𝑥 denotes the maximum degree of graph nodes). With

this primitive, Sectric introduces only 𝑂 (𝑑𝑚𝑎𝑥 |V|) overheads in
privacy-preserving local triangle counting. It makes Sectric more

suitable for analyzing sparse graphs (i.e., 𝑑𝑚𝑎𝑥 is sublinear to |V|).
Meanwhile, Sectric enables the querier to calculate the accurate

counting result. It guarantees utility but may also reveal graph

nodes’ adjacency relationship. To prevent this privacy leakage in the

computation result, we also demonstrate that Sectric is compatible

with the DP mechanism. Sectric allows adding noise subject to a

given distribution, ensuring that the querier receives only the noisy

result, while the server gains no information. The noise intensity is

the same as that in the CDP model given the same privacy budget.

In a nutshell, Sectric has the same result utility when providing the

same privacy guarantee as the CDP model, and meanwhile requires

no trusted server as the LDP model.

Furthermore, we also fully utilize the local view of graph nodes to

reduce the number of required servers. Prior crypto-assisted graph

data analysis solutions require two or more non-collusive servers

to assist, while Sectric only requires one server. This requirement

is easier to implement in practical applications.

The main contributions of this work can be summarized as:

• We design a novel local triangle counting protocol Sectric
bridging the trust assumption and utility gap between the

CDP and LDP models in the problem. Our solution shows

that the same privacy and utility guarantee as the CDP can

be achieved without requiring a trusted server.

• We explore a new approach in crypto-assisted graph data

analysis algorithms that represents a node’s neighbors us-

ing a set instead of an adjacency vector and reduces the

overheads from 𝑂 (|V|2) to 𝑂 (𝑑𝑚𝑎𝑥 |V|). We believe that

this approach can also be adopted in other tasks to reduce

the overheads and will further explore it in the future.

• We perform a comprehensive theoretical and empirical anal-

ysis of Sectric to demonstrate its privacy guarantees and

performance. We also adapt the open-source implemen-

tation of a state-of-the-art work [35, 51] to local triangle

counting as the baseline.

Paper Organization. The rest of this paper is organized as follows:
In Section 2, we discuss the related works. Then, we define the

problem in Section 3. In Section 4, we define the primitive F3PPSMT
and propose the Π3PPSMT protocol implementing this primitive.

Based on this primitive, the construction of the Sectric protocol is
presented in Section 5. Section 6 presents the experimental results,

and Section 7 concludes this paper.

2 RELATEDWORK
2.1 Privacy-Preserving Triangle Counting
The problem of privacy-preserving triangle counting has been an

active area of research. Existing works can be broadly categorized

into two groups based on whether they assume the existence of

a trusted server or not: centralized model-based approaches and

decentralized model-based approaches.

The centralized model assumes the existence of a trusted server

that holds the entire graph. Ding et al. [11] achieve a balance

between the accuracy of triangle counting and data privacy by

selecting appropriate edge deletion strategies. Raskhodnikova et

al. [28, 39] use randomized strategies to ensure that the published

triangle counts do not accurately allow inferring the existence of

any particular edge, while Kasiviswanathan et al. [29] have achieved

this by projecting the graph with a limited degree threshold. How-

ever, these approaches require a fully trusted and central server,

which can introduce privacy issues in many applications.

The solutions proposed by these works can provide privacy in

the existence of a fully trusted central server. However, in scenarios

where a trusted server is intractable to implement, their solutions

cannot be directly applied.

Thus, many works have proposed a decentralized model, where

the node set is still considered public knowledge, but the relation-

ship between two nodes is only known to them and treated as their

privacy. Sun et al. [49] propose a local differential privacy approach,

where graph nodes locally perturb their adjacency vectors to pro-

tect the privacy of edges. However, their assumption that graph

nodes have an extended local view, allowing them to see their 2-

hop neighbors, introduces the data correlation problem [37], and is

not applicable in most real-world cases. In the more realistic sce-

nario where nodes can only see their immediate neighbors, Imola

Table 2: Comparison of Sectric with related works on local triangle counting.

Protocol Privacy Model Number of Expected Computation Communication

Servers 𝑙2 Loss Overheads Overheads

ARRFull,ARROneNs,ARRTwoNs [22] DP 1 𝑂 (𝑑2

𝑚𝑎𝑥

(1−𝑒−𝜖)2) 𝑂 (|V|2) 𝑂 (|V|2)
WShuffle [23] DP 2 𝑂 (𝑑3𝑚𝑎𝑥) 𝑂 (|V|2) 𝑂 (|V|2)
CARGO [35] DP+Crypto 2 𝑂 (1

𝜖2
) 𝑂 (|V|2) 𝑂 (|V|2)

MAGO [54] DP + Crypto 3 𝑂 (1
𝜖2
) 𝑂 (|V|2) 𝑂 (|V|2)

Sectric (ours) Crypto 1 0 𝑂 (𝑑𝑚𝑎𝑥 |V|) 𝑂 (𝑑𝑚𝑎𝑥 |V|)
DPSectric (ours) DP + Crypto 1 𝑂 (1

𝜖2
) 𝑂 (𝑑𝑚𝑎𝑥 |V|) 𝑂 (𝑑𝑚𝑎𝑥 |V|)

et al. [21, 22] utilize multiple rounds of interactions to upload and

download perturbed edge information. While this approach can

preserve privacy, it also introduces a non-negligible additive error,

as highlighted by [12].

In the decentralized model, crypto-assisted solutions to triangle

counting are also emerging in recent years. CARGO [35] utilizes a

hybrid approach that combines additive secret sharing and differ-

ential privacy, allowing two untrusted servers to only see encoded

values beyond other information. This approach enables graph

nodes to add smaller amounts of noise when implementing differ-

ential privacy, thereby achieving better utility compared to [22].

Building on a similar approach, Imola et al. [23] introduce a trusted

intermediate server with shuffling functionality. Another work,

MAGO [54], which is based on lightweight secret sharing tech-

niques, utilizes three servers from different trust domains working

in coordination to improve the accuracy of triangle counting, and

also detect whether malicious adversaries attempt to tamper with

the statistical result.

A summary of the comparison between Sectric and other related
works on local triangle counting is presented in Table 2.

2.2 Crypto-Assisted Graph Analytics
Cryptographic techniques are widely applied in protecting database

privacy [4, 15, 60, 67]. Crypto-assisted solutions are also emerging

in other graph analytics tasks [8, 33, 35, 54, 64].

Some works enable graph nodes to securely contribute their

local views on a decentralized social graph for spectral analytics.

Sharma et al. [47] utilize homomorphic encryption to protect the

privacy of graph edges, allowing distributed data owners to interact

with cloud-based programs while keeping their data private from

the cloud service provider. PrivGED [55] employs secret sharing

to encrypt the elements in local view vectors, enabling privacy-

preserving eigen-decomposition analytics over decentralized social

graphs while safeguarding graph nodes’ social relationships. How-

ever, these studies focus on different analytical tasks than our work

on local triangle counting.

Another line of research leverages cryptographic techniques

for privacy-preserving epidemiological analysis, such as analyzing

transmission chains or clusters to predict infection rates using

contact data stored on mobile devices. RIPPLE [18, 20] enables

realistic simulations on the actual person-to-person social contact

graph, utilizing a set of semi-honest non-colluding MPC servers to

facilitate communication among participants. Colo [34] introduces

a protocol that guards against malicious device behavior using

random masks, efficient commitments, and range proofs, ensuring

that devices only learn their own node, edge, and topology data,

while the analyst only learns the query result. However, these

methods are not directly applicable to our local triangle counting

problem.

There is also a research direction focusing on collaborative graph

analytics, where each client possesses a local subgraph with mul-

tiple nodes and edges. Araki et al. [2] propose a secure shuffling

method for a 3-server setting with an honest majority, implement-

ing algorithms like breadth-first search and maximal independent

set. Guan et al. [17] design a scheme for two data owners to jointly

respond to a subgraph matching query without disclosing their

graph datasets to each other. FEAT [36] has a central server that

collects subgraph data from clients using private set union, ag-

gregates them into a noisy global graph, and performs triangle

counting. Oryx [66] can detect cycles of various lengths on a multi-

party federated graph while preserving topological secrecy. Pang et

al. [40] design a scheme based on structured encryption and private

set intersection cardinality techniques. They provide server tokens

to queriers to query the butterfly counts of specific nodes or edges.

However, the assumptions in these studies differ from our scenario,

where graph nodes only have a local perspective.

3 PROBLEM DEFINITION
We first introduce some notations used in this paper. For a positive

integer 𝑁 , [𝑁] denotes the set {1, 2, . . . , 𝑁 }, and Z𝑁 represents

the group modulo 𝑁 . Given a set X, 𝑥 $←− X indicates that 𝑥 is

uniformly selected from X.

3.1 Local Triangle Counting
Let G = (V, E) be a graph, where V and E represent the set of

nodes and edges, respectively. Two nodes 𝑢, 𝑣 ∈ V are adjacent if

(𝑢, 𝑣) ∈ E. We consider undirected graphs, so for any two nodes

𝑢, 𝑣 ∈ V , (𝑢, 𝑣) ∈ E if and only if (𝑣,𝑢) ∈ E. Without loss of

generality, we assume the nodes inV are indexed from 1 to |V|.
The notion of local triangle sets is defined in Definition 1. Intu-

itively speaking, a triangle in the graph is a subgraph consisting

of three vertices and three edges, forming a cycle of length three

and the local triangle set Δ𝑢 of a node 𝑢 is the set of all triangles

containing 𝑢. With the notion of local triangle set, the local triangle

counting problem can be stated as calculating |Δ𝑢 | given a graph

G = (V, E) and a node 𝑢 ∈ V .

Figure 1: An illustrative example of the Sectric systemmodel
and threat model. The system consists of graph nodes and a
server, with communication channels (dashed lines) between
the nodes and the server. The server and nodes are semi-
honest parties, and the server will not collude with nodes.

Definition 1 (Local triangle set). Given a graph G = (V, E), the
local triangle set of a node 𝑢 ∈ V is defined as:

Δ𝑢 = {{𝑢, 𝑣,𝑤} ⊂ V : (𝑢, 𝑣), (𝑢,𝑤), (𝑣,𝑤) ∈ E}.

We also define the notion of a graph node’s neighbor set in

Definition 2. The neighbor set 𝑁𝑢 of a node 𝑢 denotes the set of all

nodes adjacent to 𝑢.

Definition 2 (Neighbor set). Given a graph G = (V, E), we define
the neighbor set of a node 𝑢 ∈ V as

𝑁𝑢 = {𝑣 ∈ V : (𝑢, 𝑣) ∈ E}.

The following theorem establishes the relationship between the

local triangle sets and the neighbor sets, which serves as the foun-

dation for our Sectric protocol.

Theorem 1. Given a graph G = (V, E), for any node 𝑢 ∈ V , we
have

|Δ𝑢 | =
1

2

∑︂
𝑣∈𝑁𝑢

|𝑁𝑢 ∩ 𝑁𝑣 |.

Proof. We know that the number of triangles containing node

𝑢 is given by: |Δ𝑢 | =
∑︁

𝑣∈𝑁𝑢

∑︁
𝑤∈𝑁𝑢 ,𝑤>𝑣 𝐼 (𝑣,𝑤), where 𝐼 (𝑣,𝑤) is

an indicator function that equals 1 if there is an edge between 𝑣

and𝑤 , and 0 otherwise.

Additionally, we have: |𝑁𝑢 ∩𝑁𝑣 | =
∑︁

𝑤∈𝑁𝑢
𝐼 (𝑣,𝑤). Thus, we can

express the sum as:

∑︁
𝑣∈𝑁𝑢

|𝑁𝑢 ∩ 𝑁𝑣 | =
∑︁

𝑣∈𝑁𝑢

∑︁
𝑤∈𝑁𝑢

𝐼 (𝑣,𝑤).
In the calculation process, the positions of 𝑣 and𝑤 are equiva-

lent and interchangeable. Therefore, we can conclude that: |Δ𝑢 | =∑︁
𝑣∈𝑁𝑢

∑︁
𝑤∈𝑁𝑢 ,𝑤>𝑣 𝐼 (𝑣,𝑤) = 1

2

∑︁
𝑣∈𝑁𝑢

|𝑁𝑢 ∩ 𝑁𝑣 |. □

3.2 System Model
We design Sectric in a server-aided paradigm. The system model is

illustrated in Figure 1. The system participants include the server

S and the graph nodes. The adjacency relations between the graph

nodes are represented by the graph edges. The server S establishes

a communication channel with each graph node.

In the decentralized setting, the number of graph nodes is public

knowledge, and each graph node 𝑢 ∈ V is only aware of its neigh-

bor set 𝑁𝑢 (ref. Definition 2). The server S has no knowledge about

the adjacency relationship between the graph nodes.

In Sectric, a graph node 𝑄 acts as the querier and requests the

number of its local triangles. During the protocol execution, the

querier𝑄 interacts with the server S and its neighbors. Finally, the

protocol outputs the number of 𝑄 ’s local triangles to 𝑄 .

3.3 Threat Model and Privacy Constraints
The threat model we consider in this work is the semi-honest model,

which is commonly adopted in the context. It assumes that the

graph nodes and the server S will follow the Sectric protocol, but
may attempt to conjecture a given node’s neighbor set in protocol

execution. The threat model allows collusion of graph nodes, but

requires that the server does not collude with any graph node.

Against this threat model, Sectric targets at protecting the pri-
vacy of the adjacency relations of graph nodes in protocol execution.

We refer to this privacy constraint as preserving the “neighbor pri-

vacy” of graph nodes. To capture this privacy objective, we define

a cryptographic-style privacy constraint in Definition 3. In the defi-

nition, “Simulation” refers to that the messages’ distributions and

the algorithm’s outputs are computationally indistinguishable.

Definition 3 (Privacy Constraint). Sectric is a privacy-preserving
protocol if there exist polynomial-time algorithms AS , A𝑄 , and

AV′ such that the messages received by S, the querier 𝑄 , and

graph nodesV′ ⊂ V in the execution of Sectric can be simulated

by AS (1𝜆, 1 |V | ,Δ𝑄), A𝑄 (1𝜆, 1 |V | ,Δ𝑄), and AV′ (1𝜆, 1 |V | ,Δ𝑄),
respectively, where 𝜆 is the security parameter.

However, the privacy constraint only restricts the privacy leak-

age in participants’ interactions during protocol execution. Sectric
is designed to provide accurate counting result, and directly releas-

ing the result is also possible to reveal adjacency relations of graph

nodes. To provide higher privacy guarantee, Sectric can also add

randomness before releasing the final result to provide edge-level

DP. Below, we define the edge-level DP.

Definition 4 (𝜖-Edge CDP [43]). Let 𝜖 ≥ 0. A randomized algo-

rithmM with domain G provides 𝜖-Edge CDP if for any two neigh-

boring Graph𝐺,𝐺 ′ that differ in one edge and any 𝑆 ⊂ 𝑅𝑎𝑛𝑔𝑒 (M),
𝑃𝑟 [M(𝐺) ∈ 𝑆] ≤ 𝑒𝜖𝑃𝑟 [M(𝐺 ′) ∈ 𝑆],

where 𝜖 is the privacy budget and 𝑅𝑎𝑛𝑔𝑒 (M) denotes the set of
possible outputs ofM.

4 THREE-PARTY PRIVATE SET MEMBERSHIP
TEST

4.1 Basic Primitives
We first introduce the cryptographic tools used in this work.

Random oracles. A random oracle is a theoretical construct used

in the context of cryptography and complexity theory. It is defined

by specifying query and image domains, and it responds with an el-

ement from the image domain for every query in the query domain.

A random oracleH responds with a uniformly random value for

every newly appeared query, and a fixed value for repeated queries.

Random oracles are typically implemented using cryptographic

hash functions, such as SHA-2 or SHA-3.

Multi-point OPRF (mpOPRF). A pseudorandom function (PRF)

is a cryptographic tool that emulates a random function. Specifying

a key 𝑘 , the outputs of a pseudorandom function 𝑓𝑘 (·) on different

inputs appear random to parties without knowing 𝑘 . In practice,

it is usually implemented with symmetric encryption algorithms,

such as AES.

A mpOPRF protocol involves the sender and the receiver, which

specify a key 𝑘 and a series of inputs ⟨𝑥𝑖 ⟩𝑖∈[𝑛] , respectively. It
allows the receiver to learn the outcomes ⟨𝑓𝑘 (𝑥𝑖)⟩𝑖∈[𝑛] without
revealing additional knowledge to the sender or the receiver. This

functionality is denoted as FmpOPRF.

Private Equality Test. Private equality test is a two-party protocol
allowing two parties, say 𝑃0 and 𝑃1, to test the equality of their

inputs, and secret-share the result. The state-of-the-art implemen-

tation of this functionality is proposed by Chandran et al. [9]. This

functionality is denoted as F𝐸𝑄
Oblivious Key-Value Store (OKVS). The notion of oblivious key-

value store (OKVS) is first introduced by Garimella et al. [14] in

the context of private set intersection (PSI). OKVS allows one to

encode a set of key-value pairs into an encoding, and ensures that

the original key-value pairs generating the encoding cannot be

recovered from the encoding given that the encoded values are

uniformly random.

Definition 5 (Key-Value Store [14]). A key-value store (KVS) is

defined by specifying the key space K and the value space V ,

together with two algorithms:

(1) 𝑆 ← 𝐸 (𝐴;𝑅): The encoding algorithm takes a list of 𝑛 key-

value pairs 𝐴 = ⟨(𝑘𝑖 , 𝑣𝑖)⟩𝑖∈[𝑛] ⊂ K ×V with distinct keys

and the randomness 𝑅 as inputs. It outputs an encoding

𝑆 ∈ V𝑚 ∪ {⊥}.
(2) 𝑣 ← 𝐷 (𝑆, 𝑘): The decoding algorithm takes the encoding

𝑆 ∈ V𝑚
and a key 𝑘 ∈ K as the inputs. It outputs a value

𝑣 ∈ V .

Definition 6 (Expansion ratio). Given a KVS scheme Π, if the
encoding 𝑆 storing 𝑛 key-value pairs satisfies 𝑆 ∈ V𝑚 ∪ {⊥}, then
the expansion ratio of Π is

𝑚
𝑛 .

Definition 7 (Obliviousness). AKVSΠ = (𝐸, 𝐷) defined on the key
space K and value spaceV satisfies the condition of obliviousness
if, for any two lists of 𝑛 distinct keys ⟨𝑘𝑖 ⟩𝑖∈[𝑛] and ⟨𝑘′𝑖 ⟩𝑖∈[𝑛] , and 𝑛

values ⟨𝑣𝑖 ⟩𝑖∈[𝑛]
$←− V𝑛

drawn uniformly at random fromV𝑛
, and

for any polynomial-time algorithm A,

|𝑃𝑟 [A(𝑆) = 1] − 𝑃𝑟 [A(𝑆 ′) = 1] |
is negligible, where

𝑆 ← 𝐸 (⟨(𝑘𝑖 , 𝑣𝑖)⟩𝑖∈[𝑛]) and 𝑆 ′ ← 𝐸 (⟨(𝑘′𝑖 , 𝑣𝑖)⟩𝑖∈[𝑛]) .
In other words, the distributions of 𝑆 and 𝑆 ′ are computationally

indistinguishable.

4.2 Protocol Construction
In this part, we propose our construction to implement the 3PPSMT

primitive. The 3PPSMT primitive is a three-party functionality

Algorithm 1 The Π3PPSMT protocol.

Parameters: The security parameter 𝜆.

Involved parties and inputs:
• The server S: no input.

• The querier 𝑄 : an element 𝑢 ∈ {0, 1}𝜆 .
• The set provider𝑈 : a set 𝑋 ⊂ {0, 1}𝜆 .

Cryptographic primitives:
• A PRF family {𝑓𝑠 } and a protocol securely implementing

the functionality FmpOPRF for {𝑓𝑠 }.
• An OKVS scheme Π = (𝐸, 𝐷) with K = V = {0, 1}𝜆 .
• A private equality test protocol securely implementing

the functionality FEQ.
Preprocessing:

1: 𝑈 uniformly samples 𝑘𝑈
$←− {0, 1}𝜆 and evaluates 𝑦𝑖 =

𝑓𝑘𝑈 (𝑥𝑖) for all 𝑥𝑖 ∈ 𝑋 .

2: 𝑈 encodes 𝑆𝑈 ← Π.𝐸 (⟨(𝑥𝑖 , 𝑦𝑖)⟩𝑥𝑖 ∈𝑋), and sends all

⟨𝑦𝑖 ⟩𝑥𝑖 ∈𝑋 to S.
Online phase:

3: S samples 𝑟
$←− {0, 1}𝜆, 𝑘S

$←− {0, 1}𝜆 , and encodes 𝑆S =

Π.𝐸 (⟨(𝑦𝑖 , 𝑓𝑘S (𝑦𝑖) + 𝑟 mod 2
𝜆)⟩𝑥𝑖 ∈𝑋)

4: 𝑈 sends 𝑆𝑈 to 𝑄 , and S sends 𝑆S to 𝑄 .

5: 𝑄 obtains 𝑦 = Π.𝐷 (𝑆𝑈 , 𝑢) and �̂� = Π.𝐷 (𝑆S, 𝑦).
6: S and 𝑄 invoke FmpOPRF as the sender and the receiver

with inputs 𝑘S and 𝑦, respectively.

7: Supposing 𝑄 obtains 𝑦′ as the output of FmpOPRF, it evalu-

ates 𝑟 ′ = �̂� − 𝑦′ mod 2
𝜆
.

8: S and 𝑄 invoke FEQ with inputs 𝑟 and 𝑟 ′, respectively, and
have the outputs 𝑏S and 𝑏𝑄 from FEQ.

F3PPSMT that allows the querier 𝑄 to test whether an element is

in the set provided by a set provider𝑈 . The set 𝑋 and the element

𝑢 are selected from a universeU. The result, indicating whether

𝑢 ∈ 𝑋 or not, is secret-shared between the querier 𝑄 and server S.
The Π3PPSMT protocol is presented in Algorithm 1. In this proto-

col, the querier𝑄 inputs an element𝑢 ∈ {0, 1}𝜆 and the set provider

𝑈 inputs a set 𝑋 . This protocol aims to test whether 𝑢 ∈ 𝑋 and

secret-shares the output between the querier 𝑄 and a server S.
The Π3PPSMT protocol consists of a querier-independent prepro-

cessing phase and a querier-involved online phase. In the prepro-

cessing phase, the server S and the set provider𝑈 need not interact

with the querier𝑄 . The querier𝑄 and the query𝑢 are only involved

in the online phase.

In the preprocessing phase, 𝑈 first samples a PRF key 𝑘𝑈 and

maps the set elements 𝑥𝑖 ∈ 𝑋 to 𝑦𝑖 = 𝑓𝑘𝑈 (𝑥𝑖) in Step 1. Then, it

encodes the key-value pairs ⟨(𝑥𝑖 , 𝑦𝑖)⟩𝑖∈[|𝑋 |] into an OKVS 𝑆𝑈 . Once

receiving 𝑦𝑖 from 𝑈 , S samples a random number 𝑟 from {0, 1}𝜆
and another PRF key 𝑘S . In the following, it encodes the key-value

pairs ⟨(𝑦𝑖 , (𝑓𝑘S (𝑦𝑖) + 𝑟 mod 2
𝜆))⟩𝑖∈[|𝑋 |] into another OKVS 𝑆S in

Step 3.

In the online phase, S and 𝑈 first send 𝑆S and 𝑆𝑈 to 𝑄 , respec-

tively, in Step 4. After receiving 𝑆𝑈 and 𝑆S , 𝑄 decodes them to

obtain 𝑦 = Π.𝐷 (𝑆𝑈 , 𝑢) and �̂� = Π.𝐷 (𝑆S, 𝑦) in Step 5. In Step 6 and

Step 7, S and 𝑄 invoke FmpOPRF, and 𝑄 has 𝑦′ = 𝑓𝑘S (𝑦). 𝑄 then

evaluates 𝑟 ′ = �̂� − 𝑦′. Finally, S and 𝑄 invoke FEQ to test whether

𝑟 = 𝑟 ′.
We note that, supposing 𝑢 ∈ 𝑋 and 𝑢 = 𝑥𝑖∗ for some 𝑖∗, we have

that

𝑦 = Π.𝐷 (𝑆𝑈 , 𝑢) = Π.𝐷 (𝑆𝑈 , 𝑥𝑖∗) = 𝑦𝑖∗ ,

�̂� = Π.𝐷 (𝑆S, 𝑦) = Π.𝐷 (𝑆S, 𝑦𝑖∗) = 𝑓𝑘S (𝑦𝑖∗) + 𝑟 mod 2
𝜆 .

So,

𝑟 ′ = �̂� − 𝑦′ = 𝑓𝑘S (𝑦𝑖∗) + 𝑟 mod 2
𝜆 − 𝑓𝑘S (𝑦𝑖∗) = 𝑟

if 𝑢 ∈ 𝑋 . Therefore, if 𝑢 ∈ 𝑋 , S and 𝑄 will secret-share the result

that 𝑟 ′ = 𝑟 in the invocation of FEQ.
In contrast, supposing that 𝑢 ∉ 𝑋 , the decoding result �̂� will

not equal 𝑓𝑘S (𝑦𝑖∗) + 𝑟 (with overwhelming probability). Thus, the

resulting 𝑟 ′ is not equal to 𝑟 , and S and 𝑄 will secret-share the

result that 𝑟 ′ ≠ 𝑟 in the invocation of FEQ.

4.3 Protocol Analysis
We first analyze the communication and computation complexity

of the Π3PPSMT protocol in Theorem 2 and 3.

Theorem 2. Supposing that the OKVS scheme Π has an expansion
ratio 1 + 𝜀, the communication complexity of the Π3PPSMT protocol is
𝑂 (𝜆 |𝑋 |) in the preprocessing phase and 𝑂 ((1 + 𝜀)𝜆 |𝑋 |) in the online
phase.

Proof. In the preprocessing phase, the set provider 𝑈 sends

𝑓𝑘𝑈 (𝑥𝑖) to the server S for all 𝑥𝑖 ∈ 𝑋 . For each 𝑓𝑘𝑈 (𝑥𝑖), it requires
𝑂 (𝜆) communication complexity to send it. Thus, the preprocessing

phase has a total communication complexity of 𝑂 (𝜆 |𝑋 |).
In the online phase,𝑈 sends an OKVS encoding 𝑆𝑈 to 𝑄 , and S

sends an OKVS encoding 𝑆S to 𝑄 in Step 4. Each OKVS encoding

stores |𝑋 | key-value pairs, where each value is in the space {0, 1}𝜆 .
Since the OKVS scheme Π has an expansion ratio 1 + 𝜀, the encod-
ings’ size are both (1 + 𝜀)𝜆 |𝑋 |. Then, in the invocation of FmpOPRF
and FEQ, the communication complexity is 𝑂 (𝜆). Therefore, the
communication complexity of the online phase is𝑂 ((1+𝜀)𝜆 |𝑋 |). □

Theorem 3. Supposing that the OKVS scheme has an expan-
sion ratio 1 + 𝜀, the computation complexity of the set provider 𝑈 is
𝑂 ((1 + 𝜀)𝜆 |𝑋 |) in the preprocessing phase (server and querier have
no computation in the preprocessing phase), and 𝑂 ((1 + 𝜀)𝜆 |𝑋 |) for
both the server and the querier in the online phase.

Proof. The computation complexity in the preprocessing phase

involves:

• The set provider𝑈 evaluates 𝑓𝑘𝑈 (𝑥𝑖) for all 𝑥𝑖 ∈ 𝑋 , which

has 𝑂 (𝜆 |𝑋 |) computation complexity.

• The OKVS encoding operation stores |𝑋 | key-value pairs,
which has 𝑂 ((1 + 𝜀)𝜆 |𝑋 |) computation complexity.

Therefore, the preprocessing phase of the Π3PPSMT protocol has

𝑂 ((1 + 𝜀)𝜆 |𝑋 |) computation complexity for the set provider.

The computation complexity in the online phase involves:

• The OKVS encoding operation stores |𝑋 | key-value pairs in
Step 3, which has 𝑂 ((1 + 𝜀)𝜆 |𝑋 |) computation complexity

for the server.

• The OKVS decoding operations have 𝑂 ((1 + 𝜀)𝜆 |𝑋 |) com-

putation complexity for the querier.

• The invocation of FmpOPRF and FEQ has𝑂 (𝜆) computation

complexity for both the server and the querier.

Therefore, the online phase of the Π3PPSMT protocol has 𝑂 ((1 +
𝜀)𝜆 |𝑋 |) computation complexity for both the server and the querier.

□

In the following, we analyze the privacy of the Π3PPSMT proto-

col. Theorem 4 states that the protocol securely implements the

F3PPSMT functionality in the semi-honest threat model. In the theo-

rem, we prove that the querier𝑄 ’s query 𝑢 is revealed to the server

S and the set provider 𝑈 , and no knowledge on𝑈 ’s set 𝑋 besides

its size is revealed to S and 𝑄 .

Theorem 4. The Π3PPSMT protocol presented in Algorithm 1 se-
curely implements the F3PPSMT functionality against semi-honest
polynomial-time adversaries, given thatS,𝑈 , and𝑄 are non-collusive.

Proof. We prove this theorem by proving the following state-

ments.

(1) S cannot extract any additional knowledge on 𝑄 ’s query 𝑢

and𝑈 ’s set 𝑋 besides 𝑏S and |𝑋 |.
To prove this statement, we note that 𝑦𝑖 received by S in

Step 2 is computationally indistinguishable from random

number due to the property of pseudorandom functions.

Thus, S cannot extract additional knowledge from the |𝑋 |
random values.

(2) 𝑄 cannot extract any additional knowledge on 𝑈 ’s set 𝑋

besides 𝑏𝑄 and |𝑋 |.
To prove this statement, we first note that𝑦𝑖 received in Step

2 and 𝑓𝑘S (𝑦𝑖) received in Step 3 are computationally indis-

tinguishable from random numbers due to the property of

pseudorandom functions. Then, we can also observe that 𝑥𝑖
in Step 2 and 𝑦𝑖 in Step 3 are also computationally indistin-

guishable from random numbers due to the obliviousness of

the OKVS scheme by Definition 7. Additionally, 𝑦′ in Step

7 are also computationally indistinguishable from random

numbers due to the property of pseudorandom functions.

In summary, messages received by 𝑄 can be seen as two

OKVS encodings in Step 4, which store |𝑋 | key-value pairs
with random keys and random values, a random number in

Step 7, and 𝑏𝑄 from FEQ in Step 8. This view can be easily

simulated given |𝑋 | and 𝑏𝑄 .
(3) 𝑈 cannot extract any knowledge.

This statement can be proven by observing that𝑈 does not

receive any message in the Π3PPSMT protocol.

The above analysis shows that the Π3PPSMT protocol in Algorithm

1 securely implements the F3PPSMT functionality. □

5 THE SECTRIC PROTOCOL
5.1 Intuitive Construction
We begin by presenting an intuitive construction of the Sectric
protocol. This construction is termed “intuitive” because, while our

overarching privacy objective is to ensure neighbor privacy for all

graph nodes, the proposed construction guarantees neighbor pri-

vacy for every node except the querier 𝑄 . In particular, it discloses

the identities of the querier’s neighbors to the server.

Algorithm 2 An intuitive construction of Sectric.
Parameters: The security parameter 𝜆 and degree upper bound

𝐷 ≥ max𝑢∈V |𝑁𝑢 |.
Involved parties: The server S and the graph nodesV .

Private inputs: 𝑁𝑢 for 𝑢 ∈ V .

Cryptographic primitive: The F3PPSMT functionality.

Protocol contents:
1: Denote the querier inV as 𝑄 .

2: for 𝑢 ∈ V and |𝑁𝑢 | < 𝐷 do 𝑢 uniformly samples 𝑥 from

{0, 1}𝜆 . 𝑢 adds 𝑥 into 𝑁𝑢 .

3: end for
4: for 𝑢 ∈ 𝑁𝑄 , 𝑣 ∈ 𝑁𝑄/{𝑢} do
5: S acts as the server with input ⊥.
6: 𝑄 acts as the querier with input 𝑣 .

7: 𝑢 acts as the set provider with input 𝑁𝑢 .

8: S, 𝑄 , and 𝑢 invoke the protocol F3PPSMT.

9: Let S obtain 𝑏
𝑢,𝑣

S from F3PPSMT.

10: Let 𝑄 obtain 𝑏
𝑢,𝑣
𝑄

from F3PPSMT.

11: end for
12: S evaluates 𝑏S =

∑︁
𝑏
𝑢,𝑣

S (mod 2
𝜆).

13: 𝑄 evaluates 𝑏𝑄 =
∑︁
𝑏
𝑢,𝑣
𝑄
(mod 2

𝜆).
14: S sends 𝑏S to 𝑄 .

15: 𝑄 calculates |Δ𝑄 | = 𝑏S − 𝑏𝑄 (mod 2
𝜆).

We introduce this intuitive construction because it captures the

core idea of our full protocol and is easy to understand. Presenting

this simplified version can help readers grasp the essential concepts

before we describe the complete secure protocol.

Following the description of the intuitive protocol, we will elab-

orate on why it preserves neighbor privacy for all nodes other than

the querier, as well as the reasons for its inability to protect the

identities of the querier’s neighbors.

Protocol description. Sectric is executed on a decentralized graph.

The node set is public, and the edge set is distributed among all

graph nodes, where each graph node has its neighbor set. The

protocol involves the server S and graph nodesV as the protocol

participants. The server S has no input and each graph node𝑢 ∈ V
has its neighbor set 𝑁𝑢 as the input.

Suppose that a graph node 𝑄 ∈ V initiates a local triangle

counting task and queries the number of its local triangles. To fulfill

this task, S and 𝑄 first target at secret-sharing |𝑁𝑄 ∩ 𝑁𝑢 | for each
𝑢 ∈ 𝑁𝑄 . To achieve this, they test for each 𝑣 ∈ 𝑁𝑄 whether 𝑣 ∈ 𝑁𝑢

and secret-share the result. This task can be done through invoking

the 3PPSMT functionality F3PPSMT.

Therefore, the intuitive protocol works as follows. Given a neigh-

bor 𝑢 ∈ 𝑁𝑄 , S,𝑄 , and 𝑢 invoke the 3PPSMT functionality F3PPSMT.

They act as the server, the querier, and the set provider, respectively,

for each 𝑣 ∈ 𝑁𝑄 , where𝑄 and 𝑢 use 𝑣 and 𝑁𝑢 as the inputs. In each

invocation, S and 𝑄 obtain the outputs. This step tests whether 𝑣

is in 𝑁𝑢 for all 𝑣 ∈ 𝑁𝑄 , and S and 𝑄 share the result. Aggregating

the secret-shares of the results,𝑄 and S secret-share |𝑁𝑄 ∩𝑁𝑢 | for
this neighbor 𝑢. S and𝑄 repeat the above procedure for all 𝑢 ∈ 𝑁𝑄

and secret-share |𝑁𝑄 ∩ 𝑁𝑢 | for all 𝑢 ∈ 𝑁𝑄 . Finally, S and 𝑄 sum

the secret-shares, respectively. By Theorem 1, they obtain a secret

share of

1

2

∑︂
𝑢∈𝑁𝑄

|𝑁𝑄 ∩ 𝑁𝑢 | = |Δ𝑄 |.

S sends its share to 𝑄 , and then 𝑄 can recover the result |Δ𝑄 |.
Privacy for querier’s neighbors.We first briefly analyze why this

intuitive construction provides privacy to the querier’s neighbors.

Suppose that the F3PPSMT functionality is securely implemented by

a protocol Π3PPSMT in the universal composability model. We note

that messages received by S in this protocol is identical to these

in the instances of Π3PPSMT. Due to the property of universal com-

posability, the parallel composition of multiple Π3PPSMT instances

is also secure. So, no knowledge of the participants’ neighbor sets

is revealed to S. This fact also holds for 𝑄’s neighbors in 𝑁𝑄 . For

𝑄 , the situation is somewhat different. Messages received by 𝑄

consists of these in Π3PPSMT instances and the secret-share 𝑏S of

|Δ𝑄 | fromS. This does not alter the protocol’s privacy requirement,

as 𝑏S is obtained from 𝑏𝑄 and |Δ𝑄 |, which are both known to 𝑄 .

Insecurity of the intuitive protocol. The reason that this intu-

itive construction reveals the querier’s neighbors lies in the fact

that the server S can tell 𝑄 ’s neighbors by observing which graph

nodes it interacts with in the instances of Π3PPSMT.

In Section 5.2, we provide a technique to securely compose mul-

tiple instances of the 3PPSMT protocol to fix the above insecurity.

5.2 Full Protocol from Secure Composition
In the following, we describe the full construction of the proto-

col. This construction securely fulfills the privacy-preserving local

triangle counting task.

Recall that multiple instances of the Π3PPSMT protocol are in-

voked in Step 2-6 in the intuitive construction in Algorithm 2. In

each instance, the querier𝑄 specifies a node 𝑢 ∈ V and an element

𝑣 ∈ 𝑁𝑄 , and tests whether 𝑣 ∈ 𝑁𝑢 .

In this full construction, we mainly demonstrate how to securely

compose these Π3PPSMT protocol instances, so that the server S
does not interact with 𝑄’s neighbors. Integrating this secure com-

position technique into the intuitive protocol in Algorithm 2, we

obtain the full construction of Sectric.
We model the process as a group of set providers (i.e., the graph

nodes V) each of which provides a set (i.e., 𝑢 ∈ V provides 𝑁𝑢).

The querier has𝑚 queries, each of which specifies a set provider

(i.e., 𝑢 ∈ 𝑁𝑄) and an element (i.e., 𝑣 ∈ 𝑁𝑄/{𝑢}). Assisted by the

server, the querier tests for each query whether the element is in

the corresponding provider’s set. The privacy requirement is that

the set provider in each query is not revealed.

As stated before, naively composing multiple Π3PPSMT instances

in parallel reveals the set providers specified by𝑄 to S because the

server has to interact with them. In the following, we describe how

the secure composition technique fixes such leakage. Correspond-

ing to the original Π3PPSMT protocol, we describe the composition

of the preprocessing phase and the online phase, respectively.

Composition of the preprocessing phase. In order to compose

the preprocessing phase, we first prove Theorem 5, which states

that the preprocessing phase of the Π3PPSMT protocol is reusable.

Algorithm 3 Secure composition of multiple Π3PPSMT protocol

instances.

Public parameters:
• The security parameter 𝜆.

• The query size𝑚 and table size 𝛾𝑚 (𝛾 > 1).

Involved parties: The server S, the querier 𝑄 , and a group of set

providersV .

Private inputs:
• For 𝑢 ∈ V: 𝑁𝑢 ⊂ {0, 1}𝜆 .
• For 𝑄 :𝑚 queries {(𝑣𝑖 , 𝑥𝑖)}𝑖∈[𝑚] ⊂ V × {0, 1}𝜆 .

Cryptographic primitives: Same as the Π3PPSMT protocol.

Preprocessing:
1: for 𝑢 ∈ V do
2: 𝑢 uniformly samples 𝑘𝑢

$←− {0, 1}𝜆 and evaluates 𝑦𝑢,𝑖 =

𝑓𝑘𝑢 (𝑥𝑖) for all 𝑥𝑖 ∈ 𝑁𝑢 .

3: 𝑢 encodes 𝑆𝑢 ← Π.𝐸 (⟨(𝑥𝑖 , 𝑦𝑢,𝑖)⟩𝑥𝑖 ∈𝑁𝑢
), and sends all

⟨𝑦𝑢,𝑖 ⟩𝑥𝑖 ∈𝑁𝑢
to S.

4: end for
5: S builds a table 𝑇 of 𝛾𝑚 entries.

6: For all 𝑢 ∈ V and 𝑥𝑖 ∈ 𝑁𝑢 , S stores 𝑦𝑢,𝑖 in the 𝑖𝑛𝑑1-th,

𝑖𝑛𝑑2-th, and 𝑖𝑛𝑑3-th entries of𝑇 , where 𝑖𝑛𝑑 𝑗 = H𝑗 (𝑦𝑢,𝑖) for
𝑗 ∈ {1, 2, 3}.

Online phase:

7: S samples 𝑘S
$←− {0, 1}𝜆 .

8: for 𝑗 ∈ [𝛾𝑚] do
9: Let 𝑦1, . . . , 𝑦𝑙 𝑗 denote the strings stored in the 𝑗-th entry

of 𝑇 .

10: S samples 𝑟 𝑗
$←− {0, 1}𝜆 and encodes 𝑆S, 𝑗 =

Π.𝐸 (⟨(𝑦𝑖 , 𝑓𝑘S (𝑦𝑖) + 𝑟 𝑗 mod 2
𝜆)⟩𝑖∈[𝑙 𝑗]).

11: end for
12: S sends all 𝑆S, 𝑗 to 𝑄 . 𝑄 asks 𝑣𝑖 for 𝑆𝑣𝑖 for all 𝑣𝑖 .

13: For each query (𝑣𝑖 , 𝑥𝑖), 𝑄 decodes �̃�𝑖 ← Π.𝐷 (𝑆𝑣𝑖 , 𝑥𝑖).
14: 𝑄 builds a cuckoo hash table of 𝛾𝑚 entries storing all �̃�𝑖

usingH1,H2, andH3.

15: Let 𝑦 𝑗 be the 𝑗-th entry of the cuckoo hash table if the

entry is not empty, and otherwise let 𝑦 𝑗 = 0. 𝑄 evaluates

�̂� 𝑗 ← Π.𝐷 (𝑆S, 𝑗 , 𝑦 𝑗).
16: S and 𝑄 invoke FmpOPRF as the sender and the receiver

with inputs 𝑘S and ⟨𝑦 𝑗 ⟩𝑗∈𝑚 , respectively.

17: Supposing 𝑄 obtains ⟨𝑦′
𝑗
⟩𝑗∈𝑚 from FmpOPRF, it evaluates

𝑟 ′
𝑗
= �̂� 𝑗 − 𝑦′𝑗 mod 2

𝜆
.

18: For 𝑗 ∈ [𝛾𝑚], 𝑄 and S invoke FEQ with inputs 𝑟 𝑗 and 𝑟 ′
𝑗
,

respectively, and have outputs 𝑏S, 𝑗 and 𝑏𝑄,𝑗 . They evaluate

𝑏S =
∑︁
𝑏S, 𝑗 mod 2

𝜆
and 𝑏𝑄 =

∑︁
𝑏𝑄,𝑗 mod 2

𝜆
as the

protocol output.

Theorem 5. The preprocessing phase of the Π3PPSMT protocol is
reusable. In other words, the protocol supports polynomially many
independent queries after a single preprocessing.

Proof. From the protocol construction, messages received by

the server and the querier in multiple invocations of the online

phase are independent given that the randomness 𝑟 is newly se-

lected in each invocation. Thus, they cannot obtain more informa-

tion on the set provider’s set in parallel invocations of the Π3PPSMT
protocol due to the universal composability of the FmpOPRF and

FEQ functionalities. Therefore, the preprocessing phase of the pro-

tocol is reusable. □

This theorem inspires the composition of the preprocessing

phase. Specifically, we let all set providers run the preprocessing

phase of Π3PPSMT in parallel and send preprocessing results to the

server S. With these preprocessing results, the server no longer

has to interact with the set providers in the online phase.

Composition of the online phase. Then, we consider how to

compose the online phase with the preprocessing results. As the

server has possessed all preprocessing results, it can respond to the

querier using the preprocessing result corresponding to the queried

set provider. However, the querier still has to let the server know

the queried set provider.

To fix this problem, we have a key observation that the querier

𝑄 knows the queried set providers {𝑣𝑖 }𝑖∈[𝑚] . Thus, 𝑄 can ask

𝑣𝑖 for 𝑆𝑣𝑖 ← Π.𝐸 (⟨(𝑥 ′, 𝑓𝑘𝑢 (𝑥 ′))⟩𝑥 ′∈𝑁𝑣𝑖
) as Step 4 in Algorithm

1. After obtaining these OKVS encodings, 𝑄 decodes 𝑆𝑣𝑖 on the

queried element 𝑥𝑖 for each query (𝑣𝑖 , 𝑥𝑖). The decoding result

Π.𝐷 (𝑆𝑣𝑖 , 𝑥𝑖) = 𝑓𝑘𝑣𝑖
(𝑥𝑖) supposing 𝑥𝑖 ∈ 𝑁𝑣𝑖 , and otherwise is a

pseudorandom number.

With the decoding results, the problem is reduced to how to

test whether each decoding result Π.𝐷 (𝑆𝑣𝑖 , 𝑥𝑖) is in the PRF values

⟨𝑓𝑘𝑣𝑖 (𝑥)⟩𝑥∈𝑁𝑣𝑖
sent by the corresponding set provider 𝑣𝑖 . The key

challenge is how to specify ⟨𝑓𝑘𝑣𝑖 (𝑥)⟩𝑥∈𝑁𝑣𝑖
among all the PRF values

received by the server without revealing the exact identity of 𝑣𝑖 to

the server.

We address this challenge by observing that, due to the pseu-

dorandomness of PRF values, the PRF values from different set

providers make a collision with only negligible probability. Thus,

the querier only has to test whether each decoding result is in all

the PRF values possessed by the server. This task can be directly

fulfilled using the technique from the Π3PPSMT protocol’s online

phase in Algorithm 1.

Overheads optimization. In the preprocessing phase of the above

solution, the serverS totally receives𝑂 (∑︁𝑢∈V |𝑁𝑢 |) = 𝑂 (|E |) PRF
values. The communication overhead is 𝑂 ((1 + 𝜀)𝜆 |E |) for each
query, and totally 𝑂 ((1 + 𝜀)𝑚𝜆 |E |) in the online phase. Similarly,

the total computation overhead is 𝑂 ((1 + 𝜀)𝑚𝜆 |E |).
To further optimize the overheads, we integrate the technique of

cuckoo hash. The decoding results are mapped to different entries of

the querier-side cuckoo hash table, and the PRF values are mapped

to all possible entries in the server-side table. Then, the membership

test is only applied to the decoding result and the PRF values in the

same entry of querier-side and server-side tables.

Through this method, we reduce the online-phase communica-

tion overheads from ((1 + 𝜀)𝑚𝜆 |E |) to 𝑂 ((1 + 𝜀)𝜆 |E |), and reduce

the computation overheads from𝑂 ((1+𝜀)𝑚𝜆 |E |) to𝑂 ((1+𝜀)𝜆 |E |)
and𝑂 ((1+𝜀)𝜆𝛾𝑚) for the server and the querier, respectively. More

details can be found in Theorem 6 and Theorem 7.

Combining the above techniques, the protocol implementing the

secure composition of multiple Π3PPSMT instances is presented in

Algorithm 3. Integrating this protocol into the intuitive construction

of Sectric in Algorithm 2 to replace Step 3-6, we obtain the full

construction of Sectric.

5.3 Theoretical Analysis
In the following, we analyze the proposed protocols from a theo-

retical perspective. We first demonstrate the communication and

computation cost of invoking multiple instances of Π3PPSMT using

the secure composition technique proposed in Algorithm 3.

Theorem 6. Given that the OKVS scheme has an expansion ratio
1 + 𝜀, the communication complexity of the composed protocol in
Algorithm 3 is𝑂 (𝜆 |E |) in the preprocessing phase and𝑂 ((1+𝜀)𝜆 |E |)
in the online phase.

Proof. In the preprocessing phase, the communication mainly

occurs in Step 3, where each 𝑢 ∈ V sends all PRF values 𝑦𝑢,𝑖 to

S. There are a total of ∑︁𝑢∈V |𝑁𝑢 | = |E | PRF values of size 𝑂 (𝜆).
Thus, the communication complexity of the preprocessing phase is

𝑂 (𝜆 |E |).
In the online phase, the communication mainly occurs in Step

12, where S sends all 𝑆S, 𝑗 to𝑄 , and for each query (𝑣𝑖 , 𝑥𝑖), 𝑣𝑖 sends
𝑆𝑣𝑖 to 𝑄 . In the former, 𝑆S, 𝑗 stores 𝑙 𝑗 key-value pairs with value

size 𝑂 (𝜆). So, 𝑆S, 𝑗 has size (1 + 𝜀)𝜆𝑙 𝑗 . Noting that all entries of 𝑇

store 𝑂 (∑︁𝑢∈V |𝑁𝑢 |) = 𝑂 (|E |) PRF values, these OKVS encodings
have a total size of 𝑂 (∑︁(1 + 𝜀)𝜆𝑙 𝑗) = 𝑂 ((1 + 𝜀)𝜆 |E |). In the latter,

each OKVS encoding 𝑆𝑣𝑖 stores |𝑁𝑣𝑖 | key-value pairs with value

size𝑂 (𝜆). So, 𝑆𝑣𝑖 has size𝑂 ((1+𝜀)𝜆 |𝑁𝑣𝑖 |). Noting that for repeated
𝑣𝑖 , 𝑄 only has to ask for 𝑆𝑣𝑖 once. Thus, it requires 𝑂 (

∑︁
𝑢∈V 𝑆𝑢) =

𝑂 (∑︁𝑢∈V (1+𝜀)𝜆 |𝑁𝑢 |) = 𝑂 ((1+𝜀)𝜆 |E |) communication complexity

to send 𝑆𝑣𝑖 for all queries (𝑣𝑖 , 𝑥𝑖). Therefore, the communication

complexity in the online phase is 𝑂 ((1 + 𝜀)𝜆 |E |). □

Theorem 7. Assuming the OKVS scheme has an expansion ratio
1+ 𝜀, the computation complexity of the secure composition technique
in Algorithm 3 is𝑂 ((1+𝜀)𝜆 |𝑁𝑢 |) for graph node𝑢 ∈ V and𝑂 (𝜆 |E |)
for the server S in the preprocessing phase. In the online phase, the
computation complexity is𝑂 ((1+𝜀)𝜆 |E |) for the server S and𝑂 ((1+
𝜀)𝜆𝛾𝑚) for the querier 𝑄 .

Proof. In the preprocessing phase, each graph node 𝑢 ∈ V
evaluates all 𝑓𝑘𝑢 (𝑥𝑖) for all 𝑥𝑖 ∈ 𝑁𝑢 , requiring 𝑂 (𝜆 |𝑁𝑢 |) computa-

tion complexity, and stores |𝑁𝑢 | key-value pairs with value size

𝑂 (𝜆) in the OKVS encoding 𝑆𝑢 , requiring 𝑂 ((1 + 𝜀)𝜆 |𝑁𝑢 |) compu-

tation cost. Thus, the computation complexity for graph node 𝑢 is

𝑂 ((1 + 𝜀)𝜆 |𝑁𝑢 |).
The server S has 𝑂 (∑︁𝑢∈V 𝜆 |𝑁𝑢 |) = 𝑂 (𝜆 |E |) computation cost

to build the table 𝑇 . Thus, the computation complexity for graph

node 𝑢 is 𝑂 (𝜆 |E |).
In the online phase, the server S evaluates 𝛾𝑚 OKVS encodings,

each of which stores 𝑙 𝑗 key-value pairs with pair size 𝑂 (𝜆). So, its
computation complexity is 𝑂 (∑︁(1 + 𝜀)𝑙 𝑗𝜆) = 𝑂 ((1 + 𝜀)𝜆 |E |). S
also invokes 𝛾𝑚 instances of FmpOPRF and FEQ, making 𝑂 (𝛾𝜆𝑚)
computation complexity. Noting that 𝑂 (𝛾𝑚) ≤ 𝑂 ((1 + 𝜀) |E |), the
computation complexity of the server is 𝑂 ((1 + 𝜀)𝜆 |E |).

The computation of the querier 𝑄 mainly occurs in Step 13 and

15, decoding 𝛾𝑚 OKVS encodings with value size 𝜆. This makes

𝑂 ((1 + 𝜀)𝜆𝛾𝑚) computation complexity. □

Integrating the secure composition technique presented in Algo-

rithm 3 into the intuitive construction of Sectric in Algorithm 2 to

replace Step 3-6, we obtain the full construction of Sectric. In the

following, we analyze the privacy guarantee of this full construction

of Sectric, which is demonstrated in Theorem 8.

Theorem 8. Sectric satisfies the privacy constraint proposed in
Definition 3.

Proof. From the description of the protocol, the views of the

server and the querier in Sectric are the same as the joint view in

multiple invocations of theΠ3PPSMT protocol. So, by Theorem 4 and

Theorem 5, only |𝑁𝑢 | for each 𝑢 is revealed to S, and ∑︁
𝑢∈V |𝑁𝑢 |

is revealed to 𝑄 . As |𝑁𝑢 | = 𝐷 for all 𝑢 ∈ V in the invocations, this

does not reveal the privacy of protocol participants. □

As the main body of Sectric invokes multiple instances of the

Π3PPSMT protocol using the secure composition technique, we do

not analyze its overheads for brevity.

5.4 DP Extension of Sectric
In the following, we propose DPSectric, an extension of Sectric
that outputs an estimated result satisfying the edge-level central

differential privacy (CDP) mechanism. Quite surprisingly, we find

that only a simple modification is sufficient to achieve this goal.

Specifically, we extend Sectric as follows to provide edge-level CDP:
in Step 14 of Algorithm 2, S sends 𝑏′S = 𝑏S + Lap(1𝜖) instead of

𝑏S to the querier 𝑄 , where Lap(·) denotes the Laplace distribution
and 𝜖 is the privacy budget.

Next, we analyze how this extension provides edge-level CDP.

We note that before the server S sends its share 𝑏S to the querier𝑄

in the final step of Algorithm 2, the querier has no knowledge about

the adjacency relations of other graph nodes. Thus, the server can

add noise to its share to ensure edge-level CDP.

The next question is how much noise should be added. This

depends on the sensitivity of local triangle counts, defined as the

maximum change in the number of local triangles involving a node

between two graphs differing by a single edge. Since the querier

already knows all edges incident to itself, we only need to consider

changes to edges that do not involve the querier. In this case, the

difference in local triangle counts is at most one. Therefore, the

sensitivity is 1.

Based on the above analysis, we formally prove the utility and

privacy guarantees of DPSectric.

Utility. To demonstrate the utility of this DPSectric, we prove that
the result is unbiased and analyze the 𝑙2 loss of the result.

Theorem 9. Let 𝑓 (𝐺,𝑄) be the number of local triangles contain-
ing𝑄 in𝐺 , and 𝑓ˆ (𝐺,𝑄) be the estimate of Sectric with this extension.
Then, we have E(𝑓ˆ (𝐺,𝑄)) = 𝑓 (𝐺,𝑄) (i.e. the estimate is unbiased),
and

𝑙2
2
(𝑓 (𝐺,𝑄), 𝑓ˆ (𝐺,𝑄)) ≤ 2

𝜖2
.

Proof. In the extension, S sends 𝑏′S = 𝑏S + Lap(1𝜖) to 𝑄 , and
𝑄 outputs the estimate 𝑓ˆ (𝐺,𝑄) = 𝑏′S − 𝑏𝑄 = 𝑏S + Lap(1𝜖) − 𝑏𝑄 =

𝑓 (𝐺,𝑄) + Lap(1𝜖). Thus, E(𝑓ˆ (𝐺,𝑄)) = E(𝑓 (𝐺,𝑄) + Lap(1𝜖)) =

𝑓 (𝐺,𝑄). For the 𝑙2 loss, we have

𝑙2
2
(𝑓 (𝐺,𝑄), 𝑓ˆ (𝐺,𝑄)) = 𝑙2

2
(𝑓 (𝐺,𝑄), 𝑓 (𝐺,𝑄) + Lap(1

𝜖
))

= 𝑙2
2
(0, Lap(1

𝜖
)) ≤ 2

𝜖2
.

□

Privacy. Then, we prove that DPSectric provides 𝜖-Edge CDP.

Theorem 10. The output DPSectric satisfies the 𝜖-Edge CDP pro-
posed in Definition 4 against a polynomial-time adversary.

Proof. As stated above, we only need to consider two graphs

differing in one edge which does not contain the querier, which

implies the difference of local triangle counts is at most one. Let

�̂�(𝐺) and �̂�(𝐺 ′) denote the local triangle counts computed by

DPSectric, while 𝐿(𝐺) and 𝐿(𝐺 ′) represent those computed by

Sectric. Additionally, 𝑆 (𝐺) and 𝑆 (𝐺 ′) indicate the server’s share,
and 𝑄 (𝐺) and 𝑄 (𝐺 ′) denote the querier’s share. We could know

that 𝐿(𝐺) = 𝑆 (𝐺) − 𝑄 (𝐺) and 𝐿(𝐺 ′) = 𝑆 (𝐺 ′) − 𝑄 (𝐺 ′). Define
|𝐿(𝐺) − 𝐿(𝐺 ′) | = Δ𝑙 , where Δ𝑙 is the sensitivity of the local tri-

angle count. The noises 𝑌 and 𝑌 ′ are drawn from Lap(Δ𝑙

𝜖). The
probability of outputting the same local triangle counting result is

Pr[�̂�(𝐺) = 𝑙]
Pr[�̂�(𝐺 ′) = 𝑙]

=
Pr[𝑆 (𝐺) + 𝑌 −𝑄 (𝐺) = 𝑙]

Pr[𝑆 (𝐺 ′) + 𝑌 ′ −𝑄 (𝐺 ′) = 𝑙]

=
Pr[𝐿(𝐺) + 𝑌 = 𝑙]
Pr[𝐿(𝐺 ′) + 𝑌 ′ = 𝑙] =

Pr[𝑌 = 𝑙 − 𝐿(𝐺)]
Pr[𝑌 ′ = 𝑙 − 𝐿(𝐺 ′)]

=
𝑒
𝜖 |𝑙−𝐿 (𝐺) |

Δ𝑙

𝑒
𝜖 |𝑙−𝐿 (𝐺 ′) |

Δ𝑙

= 𝑒
𝜖 (|𝑙−𝐿 (𝐺) |−|𝑙−𝐿 (𝐺 ′) |)

Δ𝑙

≤ 𝑒
𝜖 |𝐿 (𝐺)−𝐿 (𝐺 ′) |

Δ𝑙 = 𝑒𝜖

□

6 IMPLEMENTATION AND EVALUATION
We perform extensive experiments on the performance of Sectric
and present the results in this section.

6.1 Experiment Setting

Datasets. The experiments are conducted on both real-world and

synthetic graphs for comprehensiveness. The real-world graphs are

collected from SNAP [27] and Network Repository [44], including

Facebook, CondMat, roadNet, email-Enron, and loc-Brightkite. De-

tails of the real-world graphs are provided in Table 3, where |V|
represents the number of nodes, |E | denotes the number of edges,

𝑑max indicates the maximum degree, and Domain denotes the types
of graphs. The synthetic graphs are generated using the Problem

Based Benchmark Suite (PBBS) [48] under different parameters.

Implementation Details. We implement our experimental evalu-

ations using C++ programming. All our experiments are conducted

on an Ubuntu virtual machine configured with a 2.6 GHz Intel i9-

13900H, equipped with 4 cores and 32 GB of RAM. Unless otherwise

specified, we record the computation time at a network speed of

10 Gbps and measure the online communication overhead as the

amount of data transferred between the server and the querier. Our

Table 3: Details of Real-World Graph Datasets.

Graph Abbr. |V| |E | 𝑑max Domain

Facebook FB 4,039 88,234 1,045 Social Network

CondMat CM 23,133 93,497 279 Collaboration Network

roadNet RN 1,379,917 165,435 7 Road Network

email-Enron EE 36,692 183,831 1,383 Communication Network

loc-Brightkite LB 58,228 214,078 1,134 Social Network

Table 4: Online-Phase Overheads on Real-world Graphs.

Graph Communication (GB) Computation (s)

CARGO Sectric CARGO Sectric
Q→ S S→ Q Total Querier Server

FB 0.0911 0.7341 0.8924 1.6265 2.1774 46.5642 46.3558

CM 2.9899 0.0543 0.4137 0.4679 70.4530 8.3097 8.1869
RN - 0.0019 1.2405 1.2423 - 52.4064 52.2829
EE 7.5224 1.2241 3.9794 5.2035 141.7760 185.0280 184.9030

LB 18.9449 0.8500 4.4225 5.2725 443.8780 248.4930 248.3810

The runtime of CARGO on roadNet exceeds one hour. We use “-” to

represent this in the table.

Table 5: Preprocessing Overheads on Real-world Graphs.

Graph Communication Computation

Node (KB) Server (MB) Node (ms) Server (s)

FB 16.33 64.40 1.1 5.14

CM 4.36 98.48 1.0 6.01

RN 0.19 336.89 0.7 14.60

EE 21.61 774.31 74.1 48.91

LB 17.72 1007.54 1.1 75.26

implementation targets an error probability of 2
−40

and 128 bits of

computational security, assuming that the server and the querier

have pre-generated the Beaver Triples in advance. We integrate the

OKVS and OPRF [42] implementations from [65], as well as the

private equality test implementation from [46].

Baselines. Sectric is the first crypto-assisted solution specifically

designed for privacy-preserving local triangle counting. To set a

proper performance baseline, we adopt CARGO [35], the state-of-

the-art crypto-assisted approach for global triangle counting. To

enable a fair comparison, we modify its open-source implementa-

tion [51] to return local triangle counts in our experiments
2
.

6.2 Experiment Results on Real-world Graphs
We first conduct experiments on real-world graphs to evaluate the

practical performance of Sectric.

Online-Phase Overheads. To demonstrate the efficiency of our

solution, we compare the online-phase overheads of Sectric with
those of the baseline, and present the results in Table 4. The experi-

ment results show that Sectric outperforms on large-scale graphs.

2
In the original version of CARGO, it introduces two non-colluding servers to secret-

share the adjacency table. The two servers compute the number of local triangles

for each node and secret-share the results, which are then aggregated to obtain the

total number of triangles in the entire graph. In our modification, we remove the final

aggregation step to directly return the local triangle count for a given node.

Table 6: End-to-end Querying Latency on Real-world Graphs.

Graph CARGO (s) Sectric 1-thread (s) Sectric 8-thread (s)

10 Gbps 100 Mbps 10 Gbps 100 Mbps 10 Gbps 100 Mbps

FB 2.250 9.640 46.564 176.340 27.718 155.300

CM 72.845 315.386 8.310 51.639 4.436 44.331
RN - - 52.406 188.384 14.718 140.962
EE 147.794 758.011 185.028 629.693 100.569 542.300
LB 459.034 1995.844 248.493 743.878 136.280 581.200

The runtime of CARGO on roadNet exceeds one hour. We use “-” to

represent this in the table.

100 200 300 400 500
dmax

2

4

6

8

10

Ti
m

e
(s

)

CARGO
Sectric Querier
Sectric Server

(a) |V | = 4000

100 200 300 400 500
dmax

0
1
2
3
4
5
6

Ti
m

e
(×

10
2 s

)

CARGO
Sectric Querier
Sectric Server

(b) |V | = 60000

Figure 2: Computation overheads in the online phase on
synthetic graphs with the same |V| and different 𝑑𝑚𝑎𝑥 .

On the loc-Brightkite graph, our protocol reduces computation

overheads by 44.02% and communications overheads by 72.17% in

the online phase.

Preprocessing-Phase Overheads.We also evaluate the overheads

of Sectric in the preprocessing phase on real-world graphs and

present the experimental results in Table 5. Although CARGO also

includes a preprocessing phase, the authors do not provide an open-

source implementation. Therefore, we only report the preprocessing

overheads of Sectric.
The results show that the preprocessing phase of Sectric can be

completed using approximately 1 GB of memory and within two

minutes. Since the preprocessing phase is executed only once, such

overhead is considered acceptable.

End-to-end Overheads with Multi-thread Optimization.We

also implement a multi-threaded version of Sectric and evaluate

its end-to-end performance under varying levels of parallelism

and network bandwidth. The experimental results are presented in

Table 6. The results demonstrate that, with 8-thread parallelization,

the computation overhead can be reduced by 10% to 72% on real-

world graphs.

6.3 Experiment Results on Synthetic Graphs
The above experiments evaluate the practical performance of Sec-
tric on real-world graphs. However, real-world graphs have fixed

scales and structures. To further assess the performance of Sec-
tric under varying graph characteristics, we also conduct experi-

ments on synthetic graphs generated with different parameters. The

graphs are synthesized with different maximum node degrees 𝑑𝑚𝑎𝑥

and node size |V|. In the following, we present the experimental

results on these synthetic graphs.

100 200 300 400 500
dmax

0.1

0.2

0.3

0.4

0.5

Co
m

m
. (

GB
)

CARGO
Sectric

(a) |V | = 4000

100 200 300 400 500
dmax

0
5

10
15
20
25

Co
m

m
. (

GB
)

CARGO
Sectric

(b) |V | = 60000

Figure 3: Communication overheads in the online phase on
synthetic graphs with the same |V| and different 𝑑𝑚𝑎𝑥 .

1 2 3 4 5
|| (×104)

0
0.5

1
1.5

2
2.5

3

Ti
m

e
(×

10
2 s

) CARGO
Sectric Querier
Sectric Server

(a) Computation Overheads

1 2 3 4 5
|| (×104)

0
2
4
6
8

10
12

Co
m

m
. (

GB
) CARGO

Sectric

(b) Communication Overheads

Figure 4: Computation and communication overheads in the
online phase on synthetic graphs with the same 𝑑𝑚𝑎𝑥 and
different |V|.

100 200 300 400 500
dmax

0
5

10
15
20
25

Ti
m

e
(s

)

|| = 4000
|| = 30000
|| = 60000

(a) Computation Overheads

100 200 300 400 500
dmax

0
0.1
0.2
0.3
0.4
0.5

Co
m

m
. (

GB
) || = 4000

|| = 30000
|| = 60000

(b) Communication Overheads

Figure 5: Preprocessing Overheads of Sectric on Synthetic
Graphs.

Online-Phase Overheads.Wefirst evaluate the online-phase over-

heads of Sectric on these synthetic graphs. The computation and

communication overheads, along with comparisons to the baseline,

are presented in Figure 2 and 3, respectively.

The experimental results show that the computation and com-

munication overheads of Sectric grow linearly with 𝑑max, while the

overheads of CARGO depend solely on the number of nodes in the

graph. Sectric outperforms CARGO on graphs with a larger number

of nodes. On the largest graph in our experiments, Sectric reduces
computation overhead by 86.52% and communication overhead by

90.76%.

In addition, we investigate the impact of the graph size, denoted

by the number of nodes |V|, on the overheads. The results are

shown in Figure 4. They indicate that Sectric’s overheads grow
linearly with |V|, while CARGO’s overheads grow quadratically.

These findings are consistent with our theoretical analysis.

Preprocessing-Phase Overheads.We also evaluate the overheads

of Sectric in the preprocessing phase on synthetic graphs. The

experiment results are presented in Figure 5. The results also show

that Sectric overheads in the preprocessing phase also grow linearly

with 𝑑𝑚𝑎𝑥 and |V|.

6.4 Utility-privacy Trade-off of DPSectric
We also conduct experiments to assess the utility–privacy trade-

off of DPSectric. We additionally adopt three state-of-the-art LDP

algorithms for triangle counting: ARRFull, ARROneNs, and ARRT-

woNs [22], as baselines. Note that the baseline methods—ARRFull,

ARROneNs, and ARRTwoNs—originally output the total number

of triangles in the entire graph. We halt ARRFull, ARROneNs, and

ARRTwoNs at the user end to support local triangle counting.

We select two social networks, Facebook and loc-Brightkite, as

experimental datasets. On these graphs, we assess the utility of

DPSectric under varying privacy budgets 𝜖 and compare it against

the baseline methods. In the experiments, the 𝑙2 loss of algorithm

estimates serves as the utility metric, which is calculated as

𝑙2 (𝜖) =
1

𝑁

∑︂(︂
𝑓ˆΔ (𝐺, 𝑖; 𝜖) − 𝑓Δ (𝐺, 𝑖)

)︂
2

,

where 𝑓ˆΔ(𝐺, 𝑖; 𝜖) denotes the estimate and 𝑓 Δ(𝐺, 𝑖) denotes the
ground truth. The experimental results are presented in Figure 6.

The utility of DPSectric closely matches that of CARGO for that

they both provide edge-level CDP and apply the Laplacemechanism,

but DPSectric outperforms CARGO in efficiency on large graphs

as shown in prior experiments. The results also show that DPSec-
tric outperforms the LDP algorithms—ARRFull, ARROneNs, and

ARRTwoNs—in terms of accuracy with the same privacy budget.

Besides, we demonstrate the utility contribution of DPSectric
to downstream tasks with the calculation of clustering coefficient.

We apply the triangle counting algorithms to calculating of clus-

tering coefficient and assess the utility of different algorithms. The

results are presented in Figure 7. The results show that when higher

privacy guarantee (i.e. lower privacy budget) is required, the CDP

algorithms DPSectric and CARGO achieve greater utility.

6.5 Summary of Experiments
The above experiments demonstrate that, as the overheads of Sec-
tric grow linearly with respect to |V| and𝑑𝑚𝑎𝑥 , Sectric outperforms

existed solutions on larger graphs and sparser graphs. From the

results in Figure 4, Sectric has better performance than the baseline

solution on the graph has more than 10,000 nodes with a fixed

𝑑𝑚𝑎𝑥 . The experimental results in Table 6 on real-world graphs also

demonstrate that Sectric incurs fewer overheads on the four larger

graphs: CondMat, roadNet, email-Enron, and loc-Brightkite. Fur-

thermore, compared to the state-of-the-art CDP and LDP methods,

the DP extension of Sectric achieves higher utility with the same

privacy budget. Therefore, Sectric is more suitable for the analysis

of local triangle counting on large graphs.

ARRFull ARROneNs ARRTwoNs CARGO DPSectric[ours]

0.5 1.0 1.5 2.0 2.5
Privacy Budget

100

101

102

103

104

l 2
 lo

ss

(a) Facebook

0.5 1.0 1.5 2.0 2.5
Privacy Budget

100

101

102

103

l 2
 lo

ss

(b) loc-Brightkite

Figure 6: 𝑙2 loss for counting local triangles with different
protocols. The results for CARGO and DPSectric are over-
lapped.

ARRFull ARROneNs ARRTwoNs CARGO DPSectric[ours]

0.5 1.0 1.5 2.0 2.5
Privacy Budget

0.00

0.02

0.04

0.06

0.08

0.10

l 2
 lo

ss

(a) Facebook

0.5 1.0 1.5 2.0 2.5
Privacy Budget

0.025

0.050

0.075

0.100

0.125

l 2
 lo

ss

(b) loc-Brightkite

Figure 7: 𝑙2 loss for calculating local clustering coefficient
with different protocols.

7 CONCLUSION
In this work, we present Sectric, a novel server-aided crypto-assisted
local triangle counting protocol. Sectric achieves both high accu-

racy of results and cryptographic-level privacy guarantees utilizing

cryptographic primitives. It explores a novel PSI cardinality-based

approach to local triangle counting with high efficiency. To avoid

intermediate privacy cost, we also define and implement a new

cryptographic primitive named as 3PPSMT protocol. In addition,

we propose the DPSectric protocol to avoid privacy leak in the

result of Sectric. We demonstrate the security of the proposed

solutions through thorough theoretical analysis and evaluate the

performance of the protocols through empirical experiments.

ACKNOWLEDGMENTS
This work was supported by the Natural Science Foundation on

Frontier Leading Technology Basic Research Project of Jiangsu un-

der Grant BK20222001, the National Natural Science Foundation of

China under Grants No.62272222, No.62272215, No.62325205 and

No.62172204, the Fundamental Research Funds for the Central Uni-

versities (No. 2024300401) the Key Program of the Natural Science

Foundation of Jiangsu Province under Grant No. BK20243053, and

the Nanjing University-China Mobile Communications Group Co.,

Ltd. Joint Institute. Sheng Zhong and Yuan Zhang are the corre-

sponding authors.

REFERENCES
[1] Mohammad Al Hasan and Vachik S Dave. 2018. Triangle counting in large

networks: a review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 8, 2 (2018), e1226.

[2] Toshinori Araki, Jun Furukawa, Kazuma Ohara, Benny Pinkas, Hanan Rosemarin,

and Hikaru Tsuchida. 2021. Secure Graph Analysis at Scale. Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications Security (2021).

[3] Lars Backstrom, Cynthia Dwork, and Jon M. Kleinberg. 2007. Wherefore art

thou r3579x?: anonymized social networks, hidden patterns, and structural

steganography. In The Web Conference.
[4] Johes Bater, Yongjoo Park, Xi He, Xiao Wang, and Jennie Rogers. 2020. Saqe:

practical privacy-preserving approximate query processing for data federations.

Proceedings of the VLDB Endowment 13, 12 (2020), 2691–2705.
[5] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. 2008. Efficient

semi-streaming algorithms for local triangle counting in massive graphs. In

Proceedings of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining. 16–24.

[6] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. 2010. Effi-

cient algorithms for large-scale local triangle counting. ACM Transactions on
Knowledge Discovery from Data (TKDD) 4, 3 (2010), 1–28.

[7] Paul Burkhardt. 2024. Triangle centrality. ACM Transactions on Knowledge
Discovery from Data 18, 9 (2024), 1–34.

[8] Javad Ghareh Chamani, Ioannis Demertzis, Dimitrios Papadopoulos, Charalam-

pos Papamanthou, and Rasool Jalili. 2023. GraphOS: Towards Oblivious Graph

Processing. Proceedings of the VLDB Endowment 16, 13 (2023), 4324–4338.
[9] Nishanth Chandran, Divya Gupta, and Akash Shah. 2022. Circuit-PSI with

linear complexity via relaxed batch OPPRF. Proceedings on Privacy Enhancing
Technologies (2022).

[10] Raphaël Charbey and Christophe Prieur. 2019. Stars, holes, or paths across your

Facebook friends: A graphlet-based characterization of many networks. Network
Science 7 (2019), 476 – 497.

[11] Xiaofeng Ding, Shujun Sheng, Huajian Zhou, Xiaodong Zhang, Zhifeng Bao, Pan

Zhou, and Hai Jin. 2021. Differentially Private Triangle Counting in Large Graphs.

IEEE Transactions on Knowledge and Data Engineering 34 (2021), 5278–5292.

[12] Talya Eden, Quanquan C. Liu, Sofya Raskhodnikova, and Adam D. Smith. 2023.

Triangle Counting with Local Edge Differential Privacy. ArXiv abs/2305.02263

(2023).

[13] Martin G Everett and Stephen P Borgatti. 1999. The centrality of groups and

classes. The Journal of mathematical sociology 23, 3 (1999), 181–201.

[14] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai.

2021. Oblivious key-value stores and amplification for private set intersection.

In Advances in Cryptology–CRYPTO 2021: 41st Annual International Cryptology
Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021, Proceedings, Part II
41. Springer, 395–425.

[15] Chang Ge, Ihab F Ilyas, and Florian Kerschbaum. 2019. Secure multi-party

functional dependency discovery. Proceedings of the VLDB Endowment 13, 2
(2019), 184–196.

[16] Oded Green, Pavan Yalamanchili, and Lluis-Miquel Munguia. 2014. Fast triangle

counting on the GPU. In Proceedings of the 4th Workshop on Irregular Applications:
Architectures and Algorithms. 1–8.

[17] Yunguo Guan, Rongxing Lu, Songnian Zhang, and Sean Lalla. 2023. Efficient

and Privacy-Preserving Subgraph Matching Queries in Graph Federation. ICC
2023 - IEEE International Conference on Communications (2023), 2282–2287.

[18] Daniel Gunther, Marco Holz, Benjamin Judkewitz, Helen Mollering, Benny

Pinkas, T. Schneider, and Ajith Suresh. 2022. Poster: Privacy-Preserving Epi-

demiological Modeling on Mobile Graphs. Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security (2022).

[19] Stephen J Hardiman and Liran Katzir. 2013. Estimating clustering coefficients and

size of social networks via random walk. In Proceedings of the 22nd international
conference on World Wide Web. 539–550.

[20] Marco Holz, Benjamin Judkewitz, Helen Möllering, Benny Pinkas, and T. Schnei-

der. 2020. PEM: Privacy-preserving Epidemiological Modeling. IACR Cryptol.
ePrint Arch. 2020 (2020), 1546.

[21] Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. 2020. Locally Differen-

tially Private Analysis of Graph Statistics. In USENIX Security Symposium.

[22] Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. 2022. Communication-

Efficient triangle counting under local differential privacy. In 31st USENIX security
symposium (USENIX Security 22). 537–554.

[23] Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. 2022. Differentially

Private Triangle and 4-Cycle Counting in the Shuffle Model. Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security (2022).

[24] James D. Isaak and Mina J. Hanna. 2018. User Data Privacy: Facebook, Cambridge

Analytica, and Privacy Protection. Computer 51 (2018), 56–59.
[25] Carter Jernigan and Behram F. T. Mistree. 2009. Gaydar: Facebook Friendships

Expose Sexual Orientation. First Monday 14 (2009).

[26] Yuli Jiang, Xin Huang, and Hong Cheng. 2021. I/O efficient k-truss community

search in massive graphs. The VLDB Journal 30, 5 (2021), 713–738.

[27] Leskovec Jure. 2014. SNAP Datasets: Stanford large network dataset collection.

Retrieved December 2021 from http://snap. stanford. edu/data (2014).
[28] Vishesh Karwa, Sofya Raskhodnikova, Adam D. Smith, and Grigory Yaroslavtsev.

2011. Private analysis of graph structure. Proceedings of the VLDB Endowment 4
(2011), 1146 – 1157.

[29] Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, and AdamD.

Smith. 2013. Analyzing Graphs with Node Differential Privacy. In Theory of
Cryptography Conference.

[30] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne M.

Vanbriesen, and Natalie S. Glance. 2007. Cost-effective outbreak detection in

networks. In Knowledge Discovery and Data Mining.
[31] Xue Li, Weibin Zeng, Zhibin Wang, Diwen Zhu, Jingbo Xu, Wenyuan Yu, and

Jingren Zhou. 2023. GraphAr: An Efficient Storage Scheme for Graph Data in

Data Lakes. arXiv preprint arXiv:2312.09577 (2023).

[32] Yusheng Li, Yilun Shang, and Yiting Yang. 2017. Clustering coefficients of large

networks. Information Sciences 382 (2017), 350–358.
[33] Ling Liang, Jilan Lin, Zheng Qu, Ishtiyaque Ahmad, Fengbin Tu, Trinabh Gupta,

Yufei Ding, and Yuan Xie. 2023. Spg: Structure-private graph database via

squeezepir. Proceedings of the VLDB Endowment 16, 7 (2023).
[34] Kunlong Liu and Trinabh Gupta. 2024. Making Privacy-preserving Federated

Graph Analytics Practical (for Certain Queries). Proceedings of the 29th ACM
Symposium on Access Control Models and Technologies (2024).

[35] Shang Liu, Yang Cao, Takao Murakami, Jinfei Liu, and Masatoshi Yoshikawa.

2024. CARGO: Crypto-Assisted Differentially Private Triangle Counting without

Trusted Servers. In 2024 IEEE 40th International Conference on Data Engineering
(ICDE). IEEE, 1671–1684.

[36] Shang Liu, Yang Cao, Takao Murakami, Weiran Liu, Seng Pei Liew, Tsubasa

Takahashi, Jinfei Liu, and Masatoshi Yoshikawa. 2024. Federated graph analytics

with differential privacy. arXiv preprint arXiv:2405.20576 (2024).
[37] Yuhan Liu, Suyun Zhao, Yi xiao Liu, Danting Zhao, Hong Chen, and Cuiping

Li. 2022. Collecting Triangle Counts with Edge Relationship Local Differential

Privacy. 2022 IEEE 38th International Conference on Data Engineering (ICDE)
(2022), 2008–2020.

[38] Mark EJ Newman. 2009. Random graphs with clustering. Physical review letters
103, 5 (2009), 058701.

[39] Kobbi Nissim, Sofya Raskhodnikova, and Adam D. Smith. 2007. Smooth sen-

sitivity and sampling in private data analysis. In Symposium on the Theory of
Computing.

[40] Xin Pang and Lanxiang Chen. 2025. Efficient and privacy-preserving butterfly

counting on encrypted bipartite graphs. Journal of Information Security and
Applications 89 (2025), 103952. https://doi.org/10.1016/j.jisa.2024.103952

[41] Tahereh Pourhabibi, Kok-Leong Ong, Booi Hon Kam, and Yee Ling Boo. 2020.

Fraud detection: A systematic literature review of graph-based anomaly detection

approaches. Decis. Support Syst. 133 (2020), 113303.
[42] Srinivasan Raghuraman and Peter Rindal. 2022. Blazing fast PSI from improved

OKVS and subfield VOLE. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security. 2505–2517.

[43] Sofya Raskhodnikova and Adam Smith. 2016. Differentially private analysis of

graphs. Encyclopedia of Algorithms (2016).
[44] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Reposi-

tory with Interactive Graph Analytics and Visualization. In AAAI. https:

//networkrepository.com

[45] Thomas Schank and Dorothea Wagner. 2005. Approximating clustering coeffi-

cient and transitivity. Journal of Graph Algorithms and Applications 9, 2 (2005),
265–275.

[46] Aakash Shah. 2021. 2PC-Circuit-PSI. GitHub. Retrieved April 24, 2024 from

https://github.com/shahakash28/2PC-Circuit-PSI

[47] Sagar Sharma, James Powers, and Keke Chen. 2019. PrivateGraph: Privacy-

Preserving Spectral Analysis of Encrypted Graphs in the Cloud. IEEE Transactions
on Knowledge and Data Engineering 31 (2019), 981–995.

[48] Julian Shun, Guy E Blelloch, Jeremy T Fineman, Phillip B Gibbons, Aapo Kyrola,

Harsha Vardhan Simhadri, and Kanat Tangwongsan. 2012. Brief announcement:

the problem based benchmark suite. In Proceedings of the twenty-fourth annual
ACM symposium on Parallelism in algorithms and architectures. 68–70.

[49] Haipei Sun, Xiaokui Xiao, Issa M. Khalil, Yin David Yang, Zhan Qin, Wendy Hui

Wang, and Ting Yu. 2019. Analyzing Subgraph Statistics from Extended Local

Views with Decentralized Differential Privacy. Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security (2019).

[50] Wen Jun Tan, Allan NengSheng Zhang, and Wentong Cai. 2019. A graph-based

model to measure structural redundancy for supply chain resilience. International
Journal of Production Research 57 (2019), 6385 – 6404.

[51] GraphDP Team. 2024. CARGO. GitHub. Retrieved April 24, 2024 from https:

//github.com/GraphDP/CARGO

[52] Charalampos Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco Gullo,

and Maria Tsiarli. 2013. Denser than the densest subgraph: extracting optimal

quasi-cliques with quality guarantees. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining. 104–112.

[53] Jia Wang and James Cheng. 2012. Truss decomposition in massive networks.

Proceedings of the VLDB Endowment 5, 9 (2012), 812–823.

https://doi.org/10.1016/j.jisa.2024.103952
https://networkrepository.com
https://networkrepository.com
https://github.com/shahakash28/2PC-Circuit-PSI
https://github.com/GraphDP/CARGO
https://github.com/GraphDP/CARGO

[54] Songlei Wang, Yifeng Zheng, Xiaohua Jia, Qian Wang, and Cong Wang. 2023.

MAGO: Maliciously secure subgraph counting on decentralized social graphs.

IEEE Transactions on Information Forensics and Security 18 (2023), 2929–2944.

[55] Songlei Wang, Yifeng Zheng, Xiaohua Jia, and Xun Yi. 2022. Privacy-Preserving

Analytics on Decentralized Social Graphs: The Case of Eigendecomposition. IEEE
Transactions on Knowledge and Data Engineering 35 (2022), 7341–7356.

[56] Zhibin Wang, Longbin Lai, Yixue Liu, Bing Shui, Chen Tian, and Sheng Zhong.

2023. I/o-efficient butterfly counting at scale. Proceedings of the ACM on Man-
agement of Data 1, 1 (2023), 1–27.

[57] Zhibin Wang, Longbin Lai, Yixue Liu, Bing Shui, Chen Tian, and Sheng Zhong.

2024. Parallelization of butterfly counting on hierarchical memory. The VLDB
Journal 33, 5 (2024), 1453–1484.

[58] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-

world’networks. nature 393, 6684 (1998), 440–442.
[59] Mark Weber, Jie Chen, Toyotaro Suzumura, Aldo Pareja, Tengfei Ma, Hiroki

Kanezashi, Tim Kaler, Charles E. Leiserson, and Tao B. Schardl. 2018. Scalable

Graph Learning for Anti-Money Laundering: A First Look. ArXiv abs/1812.00076
(2018).

[60] RuidiWei and Florian Kerschbaum. 2023. Cryptographically secure private record

linkage using locality-sensitive hashing. Proceedings of the VLDB Endowment 17,
2 (2023), 79–91.

[61] Minze Xu, Yuan Zhang, Fengyuan Xu, and Sheng Zhong. 2021. Privacy-

preserving optimal recovering for the nearly exhausted payment channels. In

2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS).
IEEE, 1–10.

[62] Minze Xu, Yuan Zhang, and Sheng Zhong. 2024. Towards Payment Channel

Watchtowers with Collateral-free Security and Robustness. IEEE Transactions on
Dependable and Secure Computing (2024).

[63] Jaewon Yang, Julian McAuley, and Jure Leskovec. 2013. Community detection in

networks with node attributes. In 2013 IEEE 13th international conference on data
mining. IEEE, 1151–1156.

[64] Feng Yao, Qian Tao, Wenyuan Yu, Yanfeng Zhang, Shufeng Gong, Qiange Wang,

Ge Yu, and Jingren Zhou. 2023. Ragraph: A region-aware framework for geo-

distributed graph processing. Proceedings of the VLDB Endowment 17, 3 (2023),
264–277.

[65] Yuchen. 2021. Kunlun. GitHub. Retrieved April 24, 2024 from https://github.

com/yuchen1024/Kunlun

[66] Ke Zhong and Sebastian Angel. 2024. Oryx: Private detection of cycles in feder-

ated graphs. Cryptology ePrint Archive, Paper 2024/1117 (2024).

[67] Zeqi Zhu, Zeheng Fan, Yuxiang Zeng, Yexuan Shi, Yi Xu, Mengmeng Zhou, and

Jin Dong. 2024. FedSQ: A Secure System for Federated Vector Similarity Queries.

Proceedings of the VLDB Endowment 17, 12 (2024), 4441–4444.

https://github.com/yuchen1024/Kunlun
https://github.com/yuchen1024/Kunlun

	Abstract
	1 Introduction
	2 Related Work
	2.1 Privacy-Preserving Triangle Counting
	2.2 Crypto-Assisted Graph Analytics

	3 problem definition
	3.1 Local Triangle Counting
	3.2 System Model
	3.3 Threat Model and Privacy Constraints

	4 Three-Party Private Set Membership Test
	4.1 Basic Primitives
	4.2 Protocol Construction
	4.3 Protocol Analysis

	5 The Sectric Protocol
	5.1 Intuitive Construction
	5.2 Full Protocol from Secure Composition
	5.3 Theoretical Analysis
	5.4 DP Extension of Sectric

	6 Implementation and Evaluation
	6.1 Experiment Setting
	6.2 Experiment Results on Real-world Graphs
	6.3 Experiment Results on Synthetic Graphs
	6.4 Utility-privacy Trade-off of DPSectric
	6.5 Summary of Experiments

	7 Conclusion
	Acknowledgments
	References

