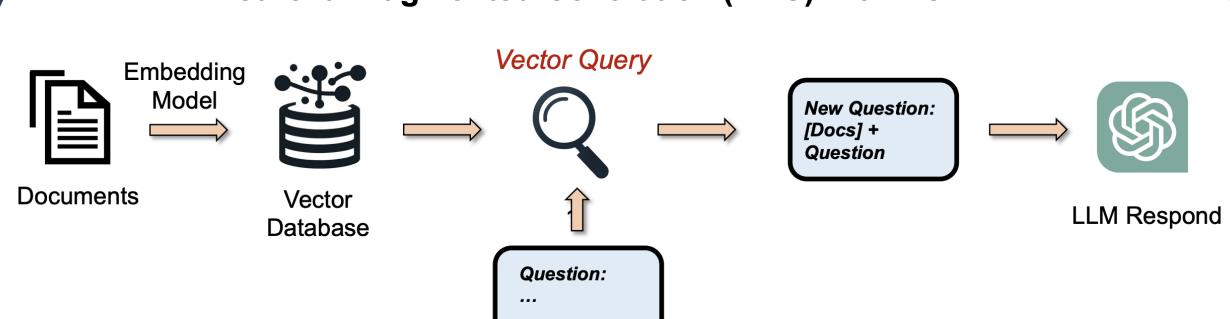


向量数据库

王智彬

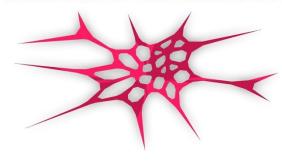
Retrieval Augmented Generation (RAG) Workflow



13:53

User Prompt

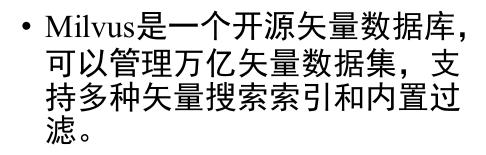
向量近似近邻搜索(ANNS)



 Meta的Faiss是一个用于高效相 似性搜索和密集向量聚类的库。 它包含搜索任意大小的向量集 的算法。它还包含用于评估和 参数调整的支持代码。

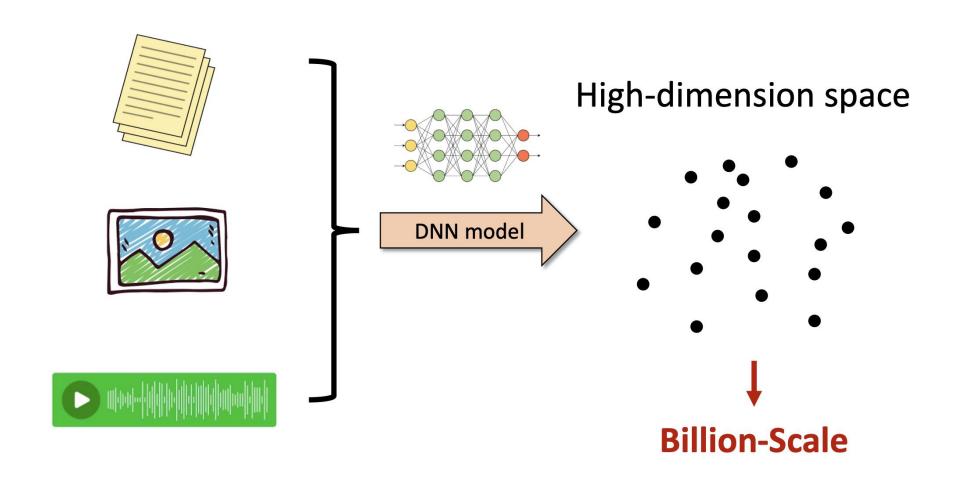
Pinecone专为机器学习应用程序设计的矢量数据库。它速度快、可扩展,并支持多种机器学习算法。建立在 Faiss 之上。

向量近似近邻搜索(ANNS)



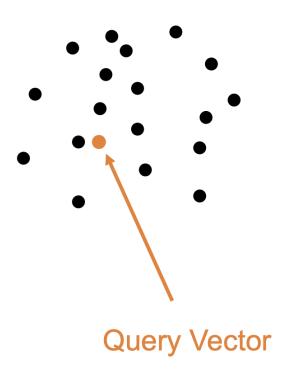
• Weaviate是一个开源向量数据库,允许存储数据对象和来自用户定义的 ML 模型的向量嵌入,并无缝扩展到数十亿个数据对象。

向量数据库



What is Vector Query ?

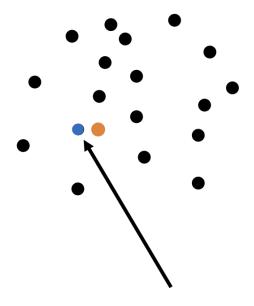
Given a query vector



What is Vector Query ?

Given a query vector

Return Top-k
Nearest vectors

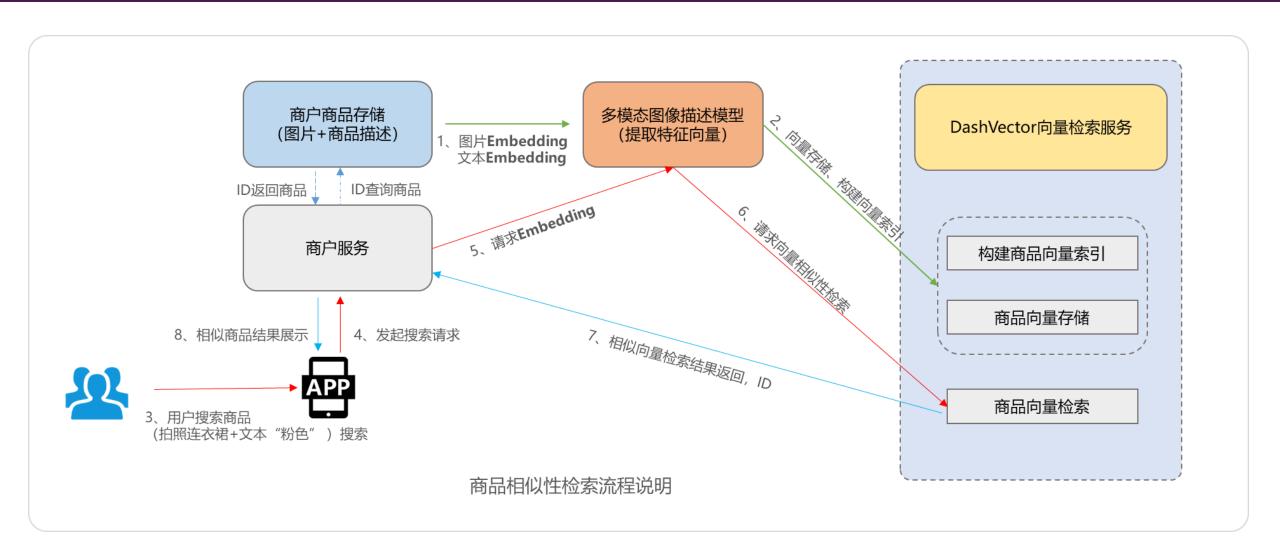


Top-1(k=1) Nearest Vector

更多向量数据库的应用

• 有同学能说说嘛

淘宝图片搜索类似商品



复杂度分析

- 给定n个向量,每个向量feature有d维,那knn的复杂度为
 - 0(nd)
- 主流向量数据库大小
 - 1billion(十亿)到100billion(千亿)个向量
 - 每个向量128-1024维

近似计算: ANNS!

- Approximate Nearest Neighbor Search (ANNS)
- 向量数据库
 - 给定一个向量的点集S,包含n个点,每个点 $x \in R^d$ 。
 - •两个点x,y之间的距离函数定义为D(x,y)
- ANNS查询
 - 给定一个查询 $q \in R^d$
 - ANNS要求返回一个点p
 - $P(D(p,q) \le cr) > 1 \delta$

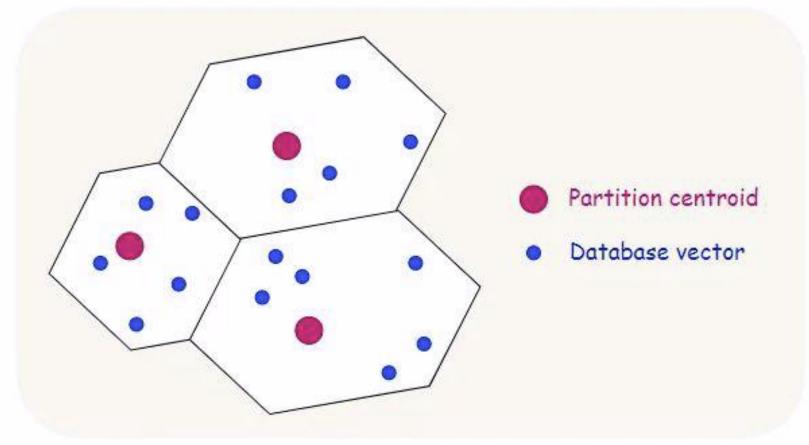
- Approximate Nearest Neighbor Search (ANNS)
- 向量数据库
 - 给定一个向量的点集S,包含n个点,每个点 $x \in R^d$ 。
 - •两个点x,y之间的距离函数定义为Dis(x,y)
- ANNS查询
 - 给定一个查询 $q \in R^d$
 - ANNS要求返回一个点p
 - $Prob(Dis(p,q) \le cr) > 1 \delta$
 - 其中 $\mathbf{r} = \min_{x} (D(p, x))$, 就是实际中的最短距离
 - $1-\delta$ 表示大概率是能够返回距离小于c的点

LSH: Locality sensitive hashing

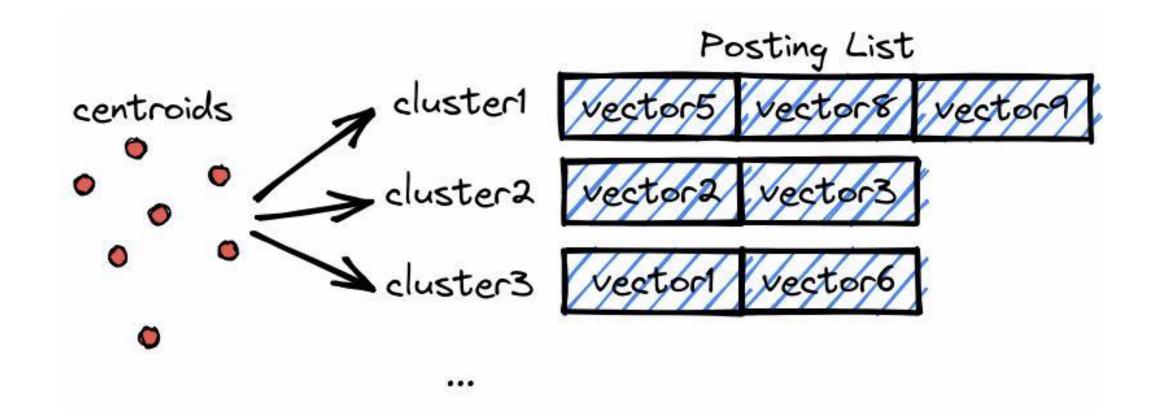
- 给定n个向量,每个向量feature有d维,那knn的复杂度为
 - 0(nd)
 - · LSH关注如何降低d
- 即给定一个向量 $x \in R^d$,设计一个LSH $(x) \in R^{d'}$
 - 对于欧氏距离LSH(x) = $\left| \frac{xW+b}{w} \right|$,可以看成从高维到低维的投影
 - W是投影矩阵, 维度为(d,d'), 同时w可以降低数据的精度
- 一个简单的例子
 - 考虑一个二维的数据,我们把他映射到一维空间,一维空间的距离可以 反应二维空间的距离,但会有精度损失
- 有理论保证!!! 详见CS246W

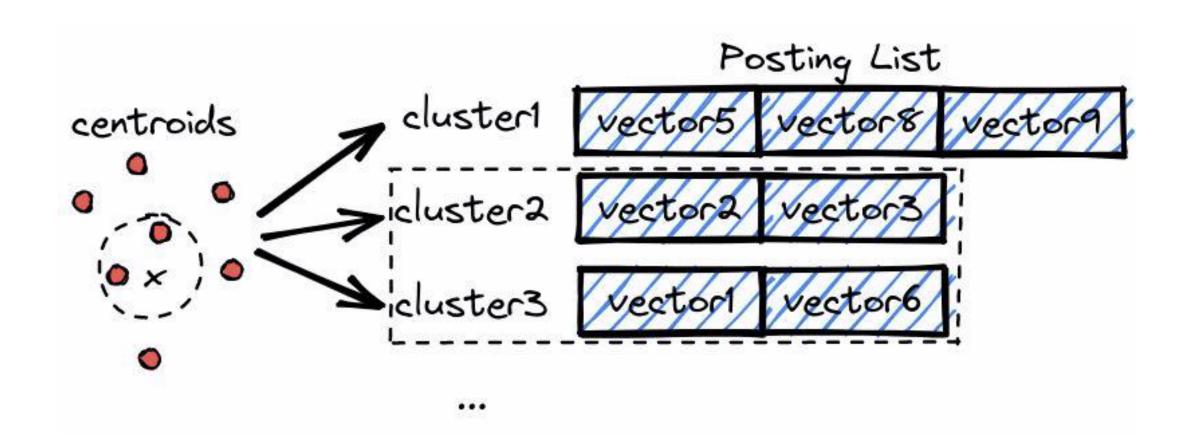
IVF: Inverted File

- 给定n个向量,每个向量feature有d维,那knn的复杂度为
 - 0(nd)
 - IVF关注如何降低n
- IVF过程
 - 聚类阶段:使用算法(如 k-means)将所有向量划分为 k 个簇,每个簇由一个质心表示。
 - 索引构建: 对于每个向量, 找到其最近的质心, 并将其分配到对应的簇中, 形成倒排索引结构。
 - 查询过程:
 - 计算查询向量与所有质心之间的距离,选择距离最近的 m个质心
 - 仅在这 m 个簇中搜索, 找到与查询向量最相似的向量。



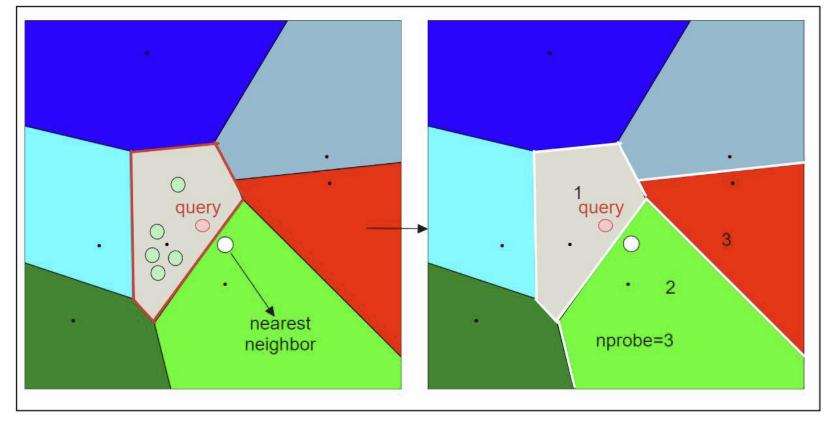
Credit: Pinecone





IVF: 我们还有什么可以研究的

- 聚类算法的设计: 速度快, 聚类效果好
- 查找算法的设计



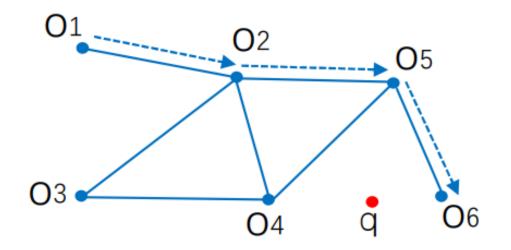
IVF: 我们还有什么可以研究的

- •聚类算法的设计:速度快,聚类效果好
- 查找算法的设计
- 层次化内存下的向量数据库(系统设计)
 - 当内存放不下整个向量数据库,如何使用磁盘
 - NSDI 24的工作Fast Vector Query Processing for Large Datasets Beyond GPU Memory with Reordered Pipelining

- LSH算法
- IVF算法
- Graph-based算法

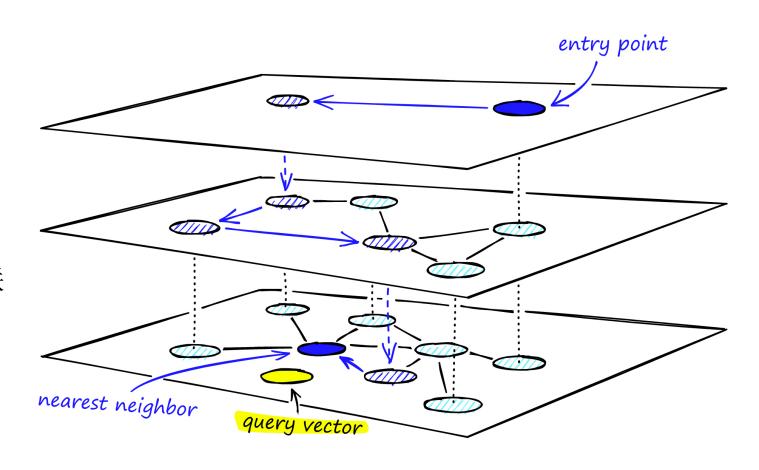
Graph-based ANNS

- 把向量的关系建模成一个graph
 - 每个向量是一个点
 - 距离近的向量连边
 - 例如使用KNN
- 搜索过程

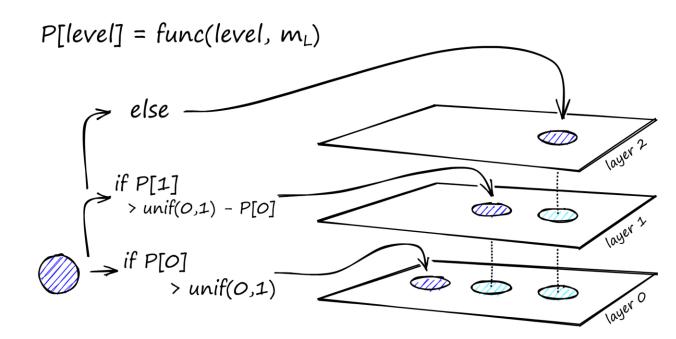


HNSW: Hierarchical Navigable Small Worl

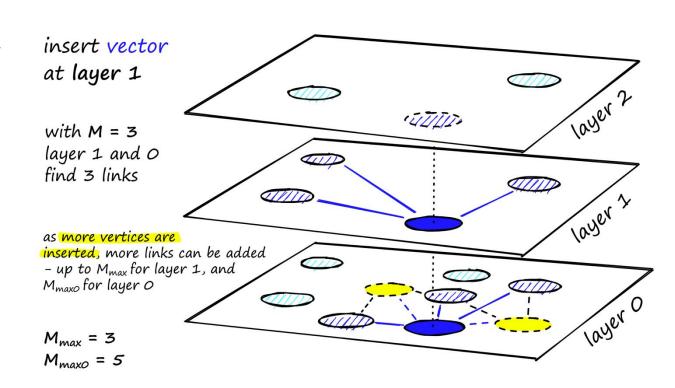
- 分层的结构,类似IVF
 - 顶层较少
 - 底层较多
- 每一层都是用图表示
 - Small World Graph
 - 六度空间理论
 - 我们可以通过6个中间人联系到所有其他的人
 - 从任意一个节点出发,经 过较少的跳跃就能到达目 标节点



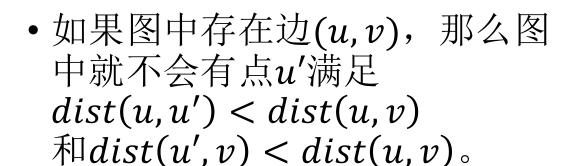
• 在图构建过程中,向量逐个进行插入。层数由参数 L 表示。向量在给定层插入的概率由归一化的概率函数给出。



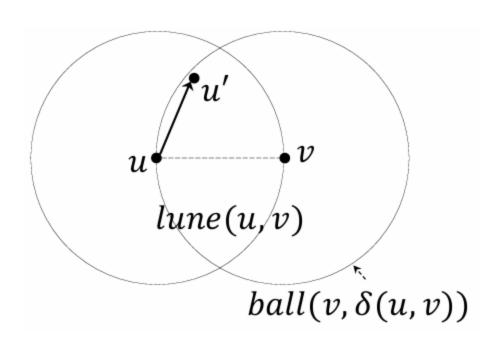
- 在图构建过程中,向量逐个进行插入。层数由参数 L 表示。向量在给定层插入的概率由归一化的概率函数给出。
- •每次插入新节点,会建立M条 边,M_{max}规定了邻居的最大个 数。
- · NSW/HNSW没有提供严格的理论分析。



RNG: Relative neighborhood graph



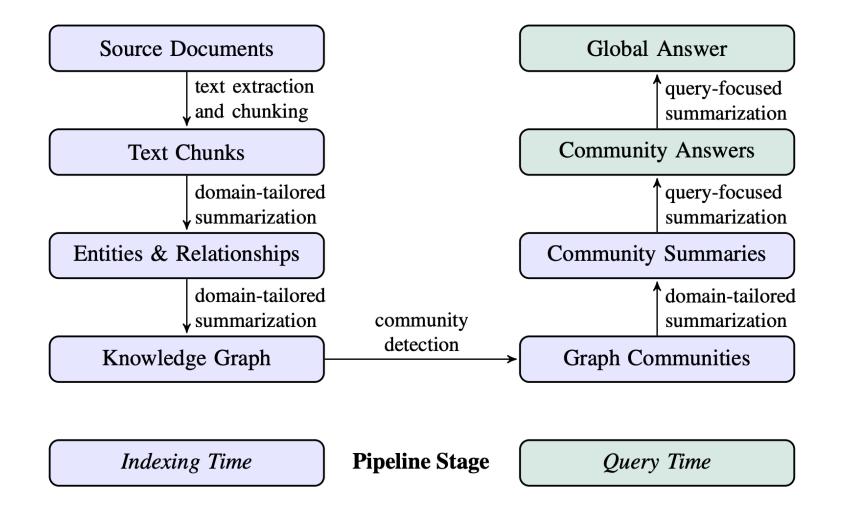
• 可以减小图的规模



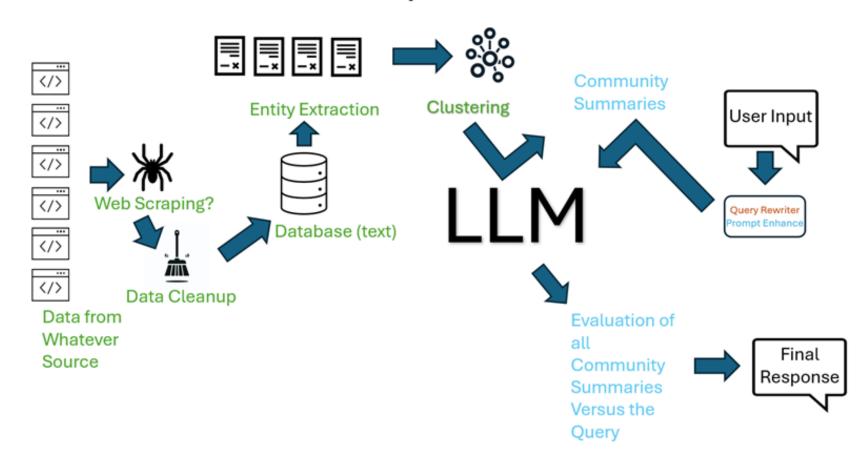
Graph-based ANNS还有什么可以研究的

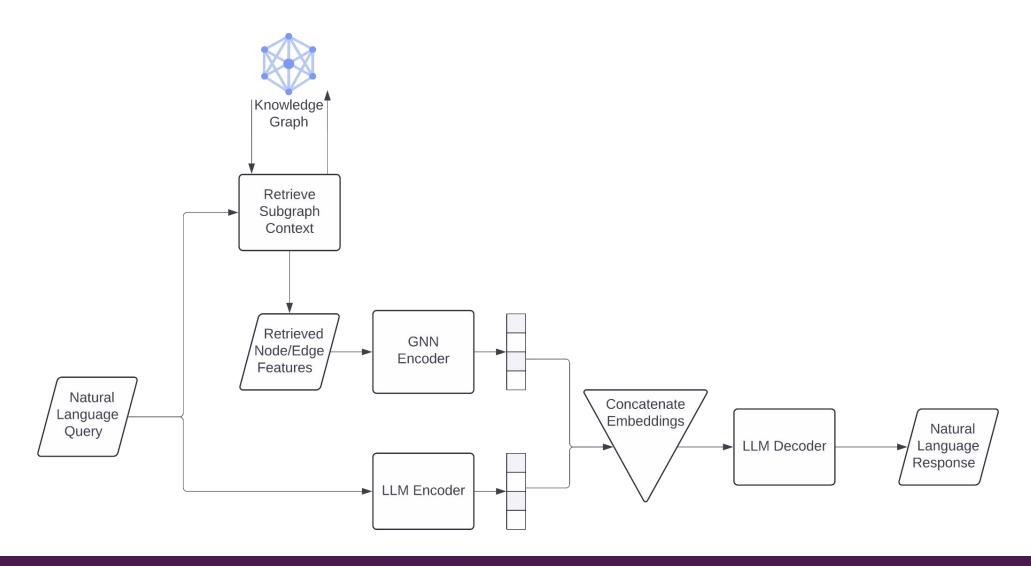
• 基于内存的vector database, graph-based ANNS已经成为主流

- 未来研究
 - 构建graph index的加速
 - 更好的graph index,减少查找量
 - 查找时的硬件加速
 - 查找过程中的剪枝



Graph RAG Flow





向量数据库加速

- 随着知识库的增大, 向量数据库的查询成为了瓶颈
- 我们设计了数据集和题目
 - https://github.com/LTTMG/anns-problem
- 研究内容
 - 图索引的构建
 - 图索引的查找
 - IVF的构建
 - IVF的查找
- 研究方向
 - 算法: 设计新算法,最小化计算量
 - 工程:在已有算法上,考虑并行,SIMD或者GPU,提升性能
 - 系统:在已有内存ANNS库上,考虑分布式或者外存场景,overlap传输和计算

- 目前大家都用vector database当做Ragas检索后端
- 能否改成使用使用knowledge graph作为知识库
 - 使用GraphRag
 - https://github.com/microsoft/graphrag
 - 或者GNN Rag
 - https://web.stanford.edu/class/cs224w/slides/18-LLMs+GNN.pdf

Thanks

Q&A

wzbwangzhibin@gmail.com

