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Why Graphs?
Graphs are a general 

language for describing and 
analyzing entities with 
relations/interactions
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Computer NetworksEvent Graphs

Underground NetworksFood Webs

Disease Pathways

Particle Networks
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Image credit: SalientNetworks

Image credit: Wikipedia
Image credit: Pinterest Image credit: visitlondon.com

https://salientnetworks.com/introductory-guide-understanding-network-infrastructure/
https://en.wikipedia.org/wiki/Food_chain
https://www.pinterest.com/pin/714524297112802250/
https://www.visitlondon.com/traveller-information/getting-around-london/london-maps-and-guides/free-london-travel-maps
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Economic Networks

Citation Networks

Communication Networks
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Social Networks
Image credit: Medium

Networks of Neurons
Image credit: The Conversation

Internet
Image credit: Missoula Current News

Image credit: Science Image credit: Lumen Learning

https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://theconversation.com/deep-learning-and-neural-networks-77259
https://missoulacurrent.com/government/2017/11/tester-net-neutrality/
https://science.sciencemag.org/content/325/5939/422
https://courses.lumenlearning.com/wmopen-introbusiness/chapter/communication-channels-flows-networks/
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Knowledge Graphs
Image credit: Maximilian Nickel et al

3D Shapes
Image credit: Wikipedia

Code Graphs
Image credit: ResearchGate

Molecules
Image credit: MDPI

Scene Graphs
Image credit: math.hws.edu

Regulatory Networks
Image credit: ese.wustl.edu
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https://arxiv.org/abs/1503.00759
https://en.wikipedia.org/wiki/Triangle_mesh
https://www.researchgate.net/figure/Static-call-graph-for-Figure-1-Callsites-are-labeled-with-their-line-number-in-the-code_fig1_220751974
https://www.mdpi.com/2078-2489/1/2/60/htm
http://math.hws.edu/graphicsbook/c2/s4.html
https://www.ese.wustl.edu/~nehorai/research/genomic/grn.html
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http://relbench.stanford.edu 
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Sales ProductsUsers

http://relbench.stanford.edu/


Complex domains have a rich relational 
structure, which can be represented as a

relational graph
By explicitly modeling relationships we 

achieve better performance!
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Main question:
How do we take advantage of 
relational structure for better 

prediction?
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Images

Text/Speech

Modern deep learning toolbox is designed 
for simple sequences & grids
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Modern 
deep learning toolbox 

is designed for 
sequences & grids
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Networks are complex.
¡ Arbitrary size and complex topological 

structure (i.e., no spatial locality like grids)

¡ No fixed node ordering or reference point
¡ Often dynamic and have multimodal features
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vs.

Networks Images

Text
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How can we develop neural networks 
that are much more broadly 

applicable?

Graphs are the new frontier 
of deep learning

10/4/24
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Peter Mary
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Protein 9

Movie 1

Movie 3
Movie 2

Actor 3

Actor 1 Actor 2

Actor 4
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¡ A heterogeneous graph is defined as 
! = #, %, &, '

§ Nodes with node types !! ∈ #
§ Edges with relation types !! , %, !" ∈ &
§ Node type ' !!
§ Relation type % ∈ (
§ Nodes and edges have attributes/features
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Academic GraphsBiomedical Knowledge Graphs
Example node: ICML
Example edge: (GraphSAGE, NeurIPS) 
Example node type: Author
Example edge type (relation): pubYear

Example node: Migraine
Example edge: (fulvestrant, Treats, Breast Neoplasms) 
Example node type: Protein
Example edge type (relation): Causes



¡ How to build a graph:
§ What are nodes?
§ What are edges?

¡ Choice of the proper network representation 
of a given domain/problem determines our 
ability to use networks successfully:
§ In some cases, there is a unique, unambiguous 

representation
§ In other cases, the representation is by no means 

unique
§ The way you assign links will determine the nature 

of the question you can study
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Undirected
¡ Links: undirected 

(symmetrical, reciprocal)

¡ Other considerations:
§ Weights
§ Properties

Directed
¡ Links: directed 

§ Types
§ Attributes
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¡ Bipartite graph is a graph whose nodes can 
be divided into two disjoint sets U and V such that 
every link connects a node in U to one in V; that is, 
U and V are independent sets

¡ Examples:
§ Authors-to-Papers (they authored)
§ Actors-to-Movies (they appeared in)
§ Users-to-Movies (they rated)
§ Recipes-to-Ingredients (they contain)

¡ “Folded” networks:
§ Author collaboration networks
§ Movie co-rating networks
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Node level

Edge-level

Community 
(subgraph)
level

Graph-level 
prediction,
Graph 
generation
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Machine 
Learning

Node classification
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Goal: Characterize the structure and position of 
a node in the network:
§ Node degree
§ Node importance & position

§ E.g., Number of shortest paths passing through a node
§ E.g., Avg. shortest path length to other nodes

§ Substructures around
the node
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¡ Graphlets: A count vector of rooted subgraphs 
at a given node.

¡ Example:
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Pedro Ribeiro

Graphlet Degree Vector

An automorphism “orbit” takes into account the 
symmetries of the graph

The graphlet degree vector is a feature vector with 
the frequency of the node in each orbit position

Pedro Ribeiro

Graphlet Degree Vector

An automorphism “orbit” takes into account the 
symmetries of the graph

The graphlet degree vector is a feature vector with 
the frequency of the node in each orbit position

Pedro Ribeiro

Graphlet Degree Vector

An automorphism “orbit” takes into account the 
symmetries of the graph

The graphlet degree vector is a feature vector with 
the frequency of the node in each orbit position

All possible graphlets on up to 3 nodes

(

) * + ,
Graphlets of node !: 
", $, %, &
[2,1,0,2]

Graphlet instances of node u:



Different ways to label nodes of the network:

47

Figure 3: Complementary visualizations of Les Misérables co-
appearance network generated by node2vec with label colors
reflecting homophily (top) and structural equivalence (bottom).

also exclude a recent approach, GraRep [6], that generalizes LINE
to incorporate information from network neighborhoods beyond 2-
hops, but does not scale and hence, provides an unfair comparison
with other neural embedding based feature learning methods. Apart
from spectral clustering which has a slightly higher time complex-
ity since it involves matrix factorization, our experiments stand out
from prior work in the sense that all other comparison benchmarks
are evaluated in settings that equalize for runtime. In doing so, we
discount for performance gain observed purely because of the im-
plementation language (C/C++/Python) since it is secondary to the
algorithm. In order to create fair and reproducible comparisons, we
note that the runtime complexity is contributed from two distinct
phases: sampling and optimization.

In the sampling phase, all benchmarks as well as node2vec pa-
rameters are set such that they generate equal samples at runtime.
As an example, if K is the overall sample constraint, then the node2vec
parameters satisfy K = r · l · |V |. In the optimization phase,
all benchmarks optimize using a stochastic gradient descent algo-
rithm with two key differences that we correct for. First, DeepWalk
uses hierarchical sampling to approximate the softmax probabilities
with an objective similar to the one use by node2vec in (2). How-
ever, hierarchical softmax is inefficient when compared with neg-
ative sampling [26]. Hence, keeping everything else the same, we
switch to negative sampling in DeepWalk which is also the de facto
approximation in node2vec and LINE. Second, both node2vec and
DeepWalk have a parameter (k) for the number of context neigh-
borhood nodes to optimize for and the greater the number, the more
rounds of optimization are required. This parameter is set to unity
for LINE. Since LINE completes a single epoch quicker than other
approaches, we let it run for k epochs.

The parameter settings used for node2vec are in line with typ-
ical values used for DeepWalk and LINE. Specifically, d = 128,
r = 10, l = 80, k = 10 and the optimization is run for a single
epoch. (Following prior work [34], we use d = 500 for spec-
tral clustering.) All results for all tasks are statistically significant
with a p-value of less than 0.01.The best in-out and return hyperpa-
rameters were learned using 10-fold cross-validation on just 10%

Algorithm Dataset
BlogCatalog PPI Wikipedia

Spectral Clustering 0.0405 0.0681 0.0395
DeepWalk 0.2110 0.1768 0.1274
LINE 0.0784 0.1447 0.1164
node2vec 0.2581 0.1791 0.1552
node2vec settings (p,q) 0.25, 0.25 4, 1 4, 0.5
Gain of node2vec [%] 22.3 1.3 21.8

Table 2: Macro-F1 scores for multilabel classification on Blog-
Catalog, PPI (Homo sapiens) and Wikipedia word cooccur-
rence networks with a balanced 50% train-test split.

labeled data with a grid search over p, q 2 {0.25, 0.50, 1, 2, 4}.
Under the above experimental settings, we present our results for
two tasks under consideration.

4.3 Multi-label classification
In the multi-label classification setting, every node is assigned

one or more labels from a finite set L. During the training phase, we
observe a certain fraction of nodes and all their labels. The task is
to predict the labels for the remaining nodes. This is a challenging
task especially if L is large. We perform multi-label classification
on the following datasets:

• BlogCatalog [44]: This is a network of social relationships
of the bloggers listed on the BlogCatalog website. The la-
bels represent blogger interests inferred through the meta-
data provided by the bloggers. The network has 10,312 nodes,
333,983 edges and 39 different labels.

• Protein-Protein Interactions (PPI) [5]: We use a subgraph
of the PPI network for Homo Sapiens. The subgraph cor-
responds to the graph induced by nodes for which we could
obtain labels from the hallmark gene sets [21] and represent
biological states. The network has 3,890 nodes, 76,584 edges
and 50 different labels.

• Wikipedia Cooccurrences [23]: This is a cooccurrence net-
work of words appearing in the first million bytes of the
Wikipedia dump. The labels represent the Part-of-Speech
(POS) tags as listed in the Penn Tree Bank [24] and inferred
using the Stanford POS-Tagger [37]. The network has 4,777
nodes, 184,812 edges and 40 different labels.

All our networks exhibit a fair mix of homophilic and structural
equivalences. For example, we would expect the social network
of bloggers to exhibit strong homophily-based relationships, how-
ever, there might also be some ‘familiar strangers’, that is, bloggers
that do not interact but share interests and hence are structurally
equivalent nodes. The biological states of proteins in a protein-
protein interaction network also exhibit both types of equivalences.
For example, they exhibit structural equivalence when proteins per-
form functions complementary to those of neighboring proteins,
and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. The word co-
occurence network is fairly dense, since edges exist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,
words having the same POS tags are not hard to find, lending a high
degree of homophily. At the same time, we expect some structural
equivalence in the POS tags due to syntactic grammar rules such as
determiners following nouns, punctuations preceeding nouns etc.

Experimental results. The learned node feature representations
are input to a one-vs-rest logistic regression using the LIBLINEAR
implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F1 scores
for comparing performance in Table 2 and the relative performance
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that do not interact but share interests and hence are structurally
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and at other times, they organize based on homophily in assisting
neighboring proteins in performing similar functions. The word co-
occurence network is fairly dense, since edges exist between words
cooccuring in a 2-length window in the Wikipedia corpus. Hence,
words having the same POS tags are not hard to find, lending a high
degree of homophily. At the same time, we expect some structural
equivalence in the POS tags due to syntactic grammar rules such as
determiners following nouns, punctuations preceeding nouns etc.

Experimental results. The learned node feature representations
are input to a one-vs-rest logistic regression using the LIBLINEAR
implementation with L2 regularization. The train and test data is
split equally over 10 random splits. We use the Macro-F1 scores
for comparing performance in Table 2 and the relative performance

Node features defined so 
far would allow to 

distinguish nodes in the 
above example

However, the features 
defines so far would not 

allow for distinguishing the 
above node labelling
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Computationally predict a protein’s 3D structure  
based solely on its amino acid sequence:
For each node predict its 3D coordinates
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Image credit: DeepMind

https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
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Image credit: DeepMind

Image credit: SingularityHub

https://deepmind.com/blog/article/AlphaFold-Using-AI-for-scientific-discovery
https://singularityhub.com/2020/12/15/deepminds-alphafold-is-close-to-solving-one-of-biologys-greatest-challenges/
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Image credit: DeepMind

¡ Key idea: “Spatial graph”
§ Nodes: Amino acids in a protein sequence
§ Edges: Proximity between amino acids (residues)

Spatial graph

https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
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¡ The task is to predict new/missing/unknown 
links based on the existing links.

¡ At test time, node pairs (with no existing links) 
are ranked, and top ) node pairs are predicted.

¡ Task: Make a prediction for a pair of nodes.
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Items

Users

¡ Users interacts with items
§ Watch movies, buy merchandise, listen to music
§ Nodes: Users and items
§ Edges: User-item interactions

¡ Goal: Recommend items users might like

10/4/24

Interactions

“You might also like”



Task: Recommend related pins to users

Query pin

8

Predict whether two nodes in a graph are related

Task: Learn node 
embeddings !! such that
" !#$%&', !#$%&(
< "(!#$%&', !)*&$+&,)

'
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Ying et al., Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018
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https://arxiv.org/pdf/1806.01973.pdf
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¡ Goal: We want make a prediction for an 
entire graph or a subgraph of the graph.

¡ For example:
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¡ a
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¡ Nodes: Road segments
¡ Edges: Connectivity between road segments
¡ Prediction: Time of Arrival (ETA)
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Image credit: DeepMind

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks


Predicting Time of Arrival with Graph Neural 
Networks

¡ Used in Google Maps
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Image credit: DeepMind

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks


¡ Antibiotics are small molecular graphs
§ Nodes: Atoms
§ Edges: Chemical bonds
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Konaklieva, Monika I. "Molecular targets of β-lactam-based antimicrobials: 
beyond the usual suspects." Antibiotics 3.2 (2014): 128-142.

Image credit: CNN

https://www.cnn.com/2019/01/24/health/antibiotic-resistance-climate-change-gbr-scli-intl/index.html
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Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery." 
Cell 180.4 (2020): 688-702.

¡ A Graph Neural Network graph classification model
¡ Predict promising molecules from a pool of candidates

Stokes et al., A Deep Learning Approach to Antibiotic Discovery, Cell 2020

https://www.sciencedirect.com/science/article/pii/S0092867420301021
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ML in the language 
of graphs:
§ Node-level:

§ Churn

§ Life-time value

§ Next best action

§ Link-level:
§ Product affinity

§ Recommendations

§ Graph-level:
§ Fraud, money 

laundering


