Stanford CS224W:
Machine Learning with Graphs



Graphs are a general
language for describing and
analyzing entities with
relations/interactions



Many Types of Data are Graphs (1)

Event Graphs Computer Networks Disease Pathways

Chesapeake Bay Waterbird Food Web

RGN
[E
Producers: _ Prepioiien _ Submeeged Anusie Vegniaion (SAV) _ Vesetaton

Food Webs Particle Networks Underground Networks
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https://salientnetworks.com/introductory-guide-understanding-network-infrastructure/
https://en.wikipedia.org/wiki/Food_chain
https://www.pinterest.com/pin/714524297112802250/
https://www.visitlondon.com/traveller-information/getting-around-london/london-maps-and-guides/free-london-travel-maps

Many Types of Data are Graphs (2)
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Social Networks Economic Networks Communication Networks

Citation Networks Internet Networks of Neurons
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https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://theconversation.com/deep-learning-and-neural-networks-77259
https://missoulacurrent.com/government/2017/11/tester-net-neutrality/
https://science.sciencemag.org/content/325/5939/422
https://courses.lumenlearning.com/wmopen-introbusiness/chapter/communication-channels-flows-networks/

Many Types of Data are Graphs (3)
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https://arxiv.org/abs/1503.00759
https://en.wikipedia.org/wiki/Triangle_mesh
https://www.researchgate.net/figure/Static-call-graph-for-Figure-1-Callsites-are-labeled-with-their-line-number-in-the-code_fig1_220751974
https://www.mdpi.com/2078-2489/1/2/60/htm
http://math.hws.edu/graphicsbook/c2/s4.html
https://www.ese.wustl.edu/~nehorai/research/genomic/grn.html

Databases are Graphs!

order_id

id nteger

customers

loan
loan_id int
account_id|int
date date

amount int

duration |int

payments |decimal

status varchar

\\ account
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order_id nteger

tem_id

nteger

customer_id integer item_id integer
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Commerce
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card
card_id|int
disp_id|int
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trans_id  |int
order account_id|int v
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_] ExternalAccounts \/

UserID INT

FacebookEmail VARCHAR(45)
erUsername VARCHAR(45)

] FollowingRelationships v

FollowingRelationshipID INT -

» UserID INT
» FollowingID INT
DateFollowed DATETIME

S——————

] Postravorites v
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DateFavorited DATETIME

] Tags v
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] UserSettings v
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DOB DATE |
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UserName VARCHAR(45)
Email VARGHAR(45)
Password VARCHAR(45)
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LocationID INT
City VARCHAR(45)
State VARCHAR(45)
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AccountStatus VARCHAR(45)
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PostID INT | Comment TEXT
> UserID INT p=——1 DateCom mented DATETIME
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] poststats ¥
DatePublished DATETIME PostID INT
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Relational Deep Learning
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http://relbench.stanford.edu
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http://relbench.stanford.edu/

Graphs: Machine Learning

Complex domains have a rich relational
structure, which can be represented as a
relational graph
By explicitly modeling relationships we
achieve better performance!
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Today: Modern ML Toolbox
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Text/Speech

Modern deep learning toolbox is designed
for simple sequences & grids
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Doubt thou the stars are fire,
Doubt that the sun doth move,
Doubt truth to be a liar,
But never doubt I lave...

Text

Modern
deep learning toolbox

Audio signals

IS designed for
seguences & grids
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Why is Graph Deep Learning Hard?

Networks are complex.
Arbitrary size and complex topological
structure (i.e., no spatial locality like grids)

Text

Networks Images

No fixed node ordering or reference point
Often dynamic and have multimodal features
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Hot subfield in ML

50 MOST APPEARED KEYWORDS (2023)

reinforcement learning
deep learning

r

raph neural networ
ransformer
federate learning
self-supervised learning
contrastive learning
robustness
generative model
continual learnin
neural networ
transfer learnin
diffusion mode
generalization
language model
computer vision
knowledge distillation
_ _vision transformer
offline reinforcement learning
optimization
fairness
_differential privacy
semi-supervised learning
unsupervised learning
deep reinforcement learning
machine learning
interpretability
meta-learning
_ adversarial robustness
multi-agent reinforcement learnin
large language mode
optimal transport
data augmentation
few-shot learning

domain generalization
Jure Le ec, SwEwowames® . \\/: Machine Learning with Graphs 32
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ICLR 2023 keywords
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Stanford CS224W:
Choice of Graph Representation



Graphs: ACommon Language

friend
co-worker

Tom

brothers friend

Albert

Protein 5

IN|=4
[E|=4

Protein 9 .
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Heterogeneous Graphs

A heterogeneous graph is defined as
G=V,E,RT)
Nodes with node types v; € IV
Edges with relation types (vi, T, vj) €EE
T(v;)
Relationtyper € R
Nodes and edges have attributes/features

10/4/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35



Many Graphs are Heterogeneous

Breast Diseases

' ‘ migraine cite

Breast Neoplasms cerebral
N i © ’ haemorrhage
eoplasms by Site IS_A ' :'}‘j’
® 5 %
chromosome },9@ 13 OOO @® prug
seggregation S 4@‘ @ Disease pubWhere hasTtile
‘ & Conference [« > Title
BRCA1 < fulvestrant_  Pyelonephritis § Adversetevent
BIRC2 Protein
CASP8
pulmonary A Pathways
embolism
ESR2 %5 4 PIM1 Author Year
Esm1 Uy, ABCB1
response
to estradiol

Biomedical Knowledge Graphs Academic Graphs

Example node: Migraine Example node: ICML

Example edge: (fulvestrant, Treats, Breast Neoplasms) Example edge: (GraphSAGE, NeurlPS)
Example node type: Protein Example node type: Author

Example edge type (relation): Causes Example edge type (relation): pubYear
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Choosing a Proper Representation

How to build a graph:

What are nodes?

What are edges?
Choice of the proper network representation
of a given domain/problem determines our
ability to use networks successfully:

In some cases, there is a unique, unambiguous
representation

In other cases, the representation is by no means
unigque

The way you assign links will determine the nature
of the question you can study
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Directed vs. Undirected Graphs

Undirected Directed

Links: undirected Links: directed
(symmetrical, reciprocal)

Other considerations:
Weights Types

Properties Attributes
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Bipartite Graph

Bipartite graph is a graph whose nodes can

be divided into two disjoint sets U and V such that
every link connects a node in U to one in V; that is,
U and V are independent sets

Examples:
Authors-to-Papers (they authored)
Actors-to-Movies (they appeared in)
Users-to-Movies (they rated)
Recipes-to-Ingredients (they contain)
“Folded” networks:
Author collaboration networks

Movie co-rating networks
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Stanford CS224W:
Applications of Graph ML



Different Types of Tasks

Node level

Graph-level i Community

rediction,
graph (subgraph)
generation level

—-—> Edge-level
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Node-Level Tasks

o o @
: ? - N

Machine ‘

Learning

Node classification
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Node-Level Network Structure

Goal: Characterize the structure and position of
a node in the network:

Node degree

Node importance & position
E.g., Number of shortest paths passing through a node
E.g., Avg. shortest path length to other nodes

Substructures around
the node
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Node’s Subgraphs: Graphlets

Graphlets: A count vector of rooted subgraphs
at a given node.

Example: All possible graphlets on up to 3 nodes
G

0L AN

Graphlet instances of node u:

a b C d
Graphlets of node u:
a,b,c,d
C Oq:z [2,1,0,2]
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Discussion

Different ways to label nodes of the network:

£ el 2° %%’
v .00 et
/%%, 00
000 Q_OU °,° %eoo
Node features defined so However, the features
far would allow to defines so far would not
distinguish nodes in the allow for distinguishing the
above example above node labelling
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Example (1): Protein Folding

Computationally predict a protein’s
based solely on its amino acid

T1037 / 6vr4 T1049 / 6y4f
90.7 GDT 93.3 GDT
(RNA polymerase domain) (adhesin tip)

Experimental result
® Computational prediction

DeepMind
10/4/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs
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https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology

AlphaFold: Impact

Median Free-Modelling Accurac

Challenges

By Shelly Fan - Dec 15,2020 ® 24,780

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
00000000000000000000000000000000

SingularityHub

AI haFold’s Al could change the world of
hmloglcal science as we know it

DeepMind's latest Al breakthrough can
accurately predict the way proteins fold

Has Artificial Intelligence ‘Solved’ Biology's
Protein-Folding Problem?

12-14-20

DeepMind’s latest Al
breakthrough could turbocharge
drug discovery
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https://deepmind.com/blog/article/AlphaFold-Using-AI-for-scientific-discovery
https://singularityhub.com/2020/12/15/deepminds-alphafold-is-close-to-solving-one-of-biologys-greatest-challenges/

AlphaFold: Solving Protein Folding

“Spatial graph”
Nodes: Amino acids in a protein sequence

Edges: Proximity between amino acids (residues)

MSA embedding Sequence-residue edges

Residues — ”
Confidence

Residues — Score

4 Residues —
Genetics g b g ¢ i Ry N
search — |3 3 eee —3 | § 3 o —| 3 . il
& embed 2 N | .
} 3 7 H L \
A : O 7 ~

3 3 : . g gz
LR {
Protein sequence | Structure | N
7 module I\
\L - j" )/
Residues — Residues — -
Embed & g g f -
outer sum a md - 7 - \— (
> \
{ \
— Pairwise
distances
Residue-residue edges 3D structure
DeepMind
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https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology

Stanford CS224W:
Link Prediction



Link-Level Prediction Task

10/4/24

The task is to predict new/missing/unknown
links based on the existing links.

At test time, node pairs (with no existing links)
are ranked, and top K node pairs are predicted.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu



Example (1): Recommender Systems

Users interacts with items
Watch movies, buy merchandise, listen to music

Nodes: Users and items

Edges: User-item interactions
Goal: Recommend items users might like

Users @ '® @ @ @ Interactions
/

\ 4
N
s

—-—>

“You might also like”
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Yingetal., , KDD 2018

PinSage: Graph-based Recommender

Task: Recommend related pins to users

P
fZe’-“-’

Task: Learn node

/ - embeddings z; such that
% ‘ b RECSJ(L;E/I(I\:/IEESI\ISDF/H'LION d(ankel: ZCCLkBZ)

S \ M < d(ankel; steater)

BAD RECOMMENDATION

Predict whether two nodes in a graph are related

Teeceesepay

[
8%
. = ‘i . L;j &
"Jf'hw‘? Rey e=e? ‘
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https://arxiv.org/pdf/1806.01973.pdf

Stanford CS224W:
Graph-Level Tasks



Graph-Level Prediction

We want make a prediction for an
entire graph or a subgraph of the graph.

For example:

10/4/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 59



Example (1): Traffic Pred
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Road Network as a Graph

Nodes: Road segments
Edges: Connectivity between road segments
Prediction: Time of Arrival (ETA)

me  mn mw\ /e
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https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks

Traffic Prediction via GNN

Predicting Time of Arrival with Graph Neural
Networks

Predictions
Anonymised ; Supersegments ; Graph neural Google Maps
travel data Analysed Training network API

data

Surfaced

Used in Google Maps

Goong.Maps Canditiste Google Maps
routing user routes app
system A-B

THE MODEL ARCHITECTURE FOR DETERMINING OPTIMAL ROUTES AND THEIR TRAVEL TIME. %M
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https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks

Example (2): Drug Discovery

ROCHN

ﬁ» oL T,

penicillins cephalosporins cephamycins

ROCHN

Y, Peve

oxacephems clavulanic acid penems

Antibiotics are small molecular graphs
Nodes: Atoms
Edges: Chemical bonds

ROCHN ROCHN, 2CM2 g

CO,H CO,H

CO,H COoH
(an oxapenem)

H

HO : RHN on RHN
R
N/ j;‘u j;lL\ )
(0] o} o SOz
COxH CO,H
carbapenems nocardicin monobactams
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https://www.cnn.com/2019/01/24/health/antibiotic-resistance-climate-change-gbr-scli-intl/index.html

Stokes et al.,

, Cell 2020

Deep Learning for Antibiotic Discovery

A Graph Neural Network graph classification model
Predict promising molecules from a pool of candidates

Chemical landscape

Directed message (Large scale predictions

passing neural network (upper limit 108 +) )
\ |
~\

3 A
o’“"}fb

Training set

Conventional small
molecule screening

4 Iterative Chemical screening
(10 molecules) model (upper limit 108 - 10°)
l re-training

|

Hit validation
(1 - 3% hit rate)

Machine learning

|

Predictions &
model validation

\

/

Growth

identification
& optimization
J \ J

[antibiotic]

10/4/24 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

64


https://www.sciencedirect.com/science/article/pii/S0092867420301021

ML in the language

Summary

of graphs:

Node-level:

Churn
Life-time value
Next best action

Link-level:

Product affinity
Recommendations

Graph-level:

Fraud, money
laundering

Users
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Products
Product_ID

Product_ID
Session_ID

User_ID

Price

$20
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$15
$20

S80

$80
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