Stanford CS224W: Machine Learning with Graphs

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Why Graphs?

Graphs are a general language for describing and analyzing entities with relations/interactions

Many Types of Data are Graphs (1)

Event Graphs

Image credit: Wikipedia

Food Webs

Computer Networks

Image credit: Pinterest

Particle Networks

Disease Pathways

Image credit: <u>visitlondon.com</u>

Underground Networks

Many Types of Data are Graphs (2)

Image credit: Medium

Image credit: Science

Image credit: Lumen Learning

Social Networks

Citation Networks

Economic Networks Communication Networks

Image credit: Missoula Current News

Image credit: The Conversation

Networks of Neurons

Many Types of Data are Graphs (3)

Image credit: math.hws.edu

Image credit: Maximilian Nickel et al

Knowledge Graphs

Regulatory Networks

Scene Graphs

Image credit: MDPI

Code Graphs

Molecules

3D Shapes

Databases are Graphs!

Social Media **Finance** Commerce

10/4/24

Relational Deep Learning

http://relbench.stanford.edu

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Graphs: Machine Learning

Complex domains have a rich relational structure, which can be represented as a relational graph

By explicitly modeling relationships we achieve better performance!

Main question:

How do we take advantage of relational structure for better prediction?

Today: Modern ML Toolbox

Modern deep learning toolbox is designed for simple sequences & grids

Doubt thou the stars are fire, Doubt that the sun doth move, Doubt truth to be a liar, But never doubt I love...

Text

Audio signals

Images

Modern deep learning toolbox is designed for sequences & grids

Why is Graph Deep Learning Hard?

Networks are complex.

 Arbitrary size and complex topological structure (i.e., no spatial locality like grids)

- No fixed node ordering or reference point
- Often dynamic and have multimodal features

This Course: CS224W

How can we develop neural networks that are much more broadly applicable?

Graphs are the new frontier of deep learning

Hot subfield in ML

50 MOST APPEARED KEYWORDS (2023)

32

Stanford CS224W: Choice of Graph Representation

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University
http://cs224w.stanford.edu

Graphs: A Common Language

Heterogeneous Graphs

- A heterogeneous graph is defined as G = (V, E, R, T)
 - Nodes with node types $v_i \in V$
 - Edges with relation types $(v_i, r, v_j) \in E$
 - Node type $T(v_i)$
 - Relation type $r \in R$
 - Nodes and edges have attributes/features

Many Graphs are Heterogeneous

Biomedical Knowledge Graphs

Example node: Migraine

10/4/24

Example edge: (fulvestrant, Treats, Breast Neoplasms)

Example node type: Protein

Example edge type (relation): Causes

Academic Graphs

Example node: ICML

Example edge: (GraphSAGE, NeurIPS)

Example node type: Author

Example edge type (relation): pubYear

Choosing a Proper Representation

- How to build a graph:
 - What are nodes?
 - What are edges?
- Choice of the proper network representation of a given domain/problem determines our ability to use networks successfully:
 - In some cases, there is a unique, unambiguous representation
 - In other cases, the representation is by no means unique
 - The way you assign links will determine the nature of the question you can study

Directed vs. Undirected Graphs

Undirected

Links: undirected (symmetrical, reciprocal)

- Other considerations:
 - Weights
 - Properties

Directed

Links: directed

- Types
- Attributes

Bipartite Graph

Bipartite graph is a graph whose nodes can be divided into two disjoint sets *U* and *V* such that every link connects a node in *U* to one in *V*; that is, *U* and *V* are independent sets

Examples:

- Authors-to-Papers (they authored)
- Actors-to-Movies (they appeared in)
- Users-to-Movies (they rated)
- Recipes-to-Ingredients (they contain)
- "Folded" networks:
 - Author collaboration networks
 - Movie co-rating networks

Stanford CS224W: Applications of Graph ML

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University
http://cs224w.stanford.edu

Different Types of Tasks

Node-Level Tasks

Node classification

Node-Level Network Structure

Goal: Characterize the structure and position of a node in the network:

- Node degree
- Node importance & position
 - E.g., Number of shortest paths passing through a node
 - E.g., Avg. shortest path length to other nodes

Substructures around the node

Node's Subgraphs: Graphlets

- Graphlets: A count vector of rooted subgraphs at a given node.
- Example:

All possible graphlets on up to 3 nodes

Graphlet instances of node u:

C

Graphlets of node *u*:

a, *b*, *c*, *d* [2,1,0,2]

Discussion

Different ways to label nodes of the network:

Node features defined so far would allow to distinguish nodes in the above example

However, the features defines so far would not allow for distinguishing the above node labelling

Example (1): Protein Folding

Computationally predict a protein's 3D structure based solely on its amino acid sequence:

For each node predict its 3D coordinates

- Experimental result
- Computational prediction

Image credit: <u>DeepMind</u>

AlphaFold: Impact

Image credit: SingularityHub

AlphaFold's Al could change the world of biological science as we know it

DeepMind's latest AI breakthrough can accurately predict the way proteins fold

Has Artificial Intelligence 'Solved' Biology's Protein-Folding Problem?

12-14-20

DeepMind's latest Al breakthrough could turbocharge drug discovery

AlphaFold: Solving Protein Folding

- Key idea: "Spatial graph"
 - Nodes: Amino acids in a protein sequence
 - Edges: Proximity between amino acids (residues)

Stanford CS224W: Link Prediction

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Link-Level Prediction Task

- The task is to predict new/missing/unknown links based on the existing links.
- At test time, node pairs (with no existing links)
 are ranked, and top K node pairs are predicted.
- Task: Make a prediction for a pair of nodes.

Example (1): Recommender Systems

- Users interacts with items
 - Watch movies, buy merchandise, listen to music
 - Nodes: Users and items
 - Edges: User-item interactions
- Goal: Recommend items users might like

PinSage: Graph-based Recommender

Task: Recommend related pins to users

Task: Learn node embeddings z_i such that $d(z_{cake1}, z_{cake2})$ $< d(z_{cake1}, z_{sweater})$

Predict whether two nodes in a graph are related

Stanford CS224W: Graph-Level Tasks

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Graph-Level Prediction

 Goal: We want make a prediction for an entire graph or a subgraph of the graph.

For example:

Example (1): Traffic Prediction

Road Network as a Graph

- Nodes: Road segments
- Edges: Connectivity between road segments
- Prediction: Time of Arrival (ETA)

Traffic Prediction via GNN

Predicting Time of Arrival with Graph Neural Networks

Image credit: DeepMind

Example (2): Drug Discovery

Antibiotics are small molecular graphs

- Nodes: Atoms
- Edges: Chemical bonds

ROCHN
$$\stackrel{H}{=}$$
 S ROCHN $\stackrel{H}{=}$ S ROCHN $\stackrel{QCH_3}{=}$ S ROCHN $\stackrel{QCH_3}{=}$ S ROCHN $\stackrel{QCH_3}{=}$ S ROCHN $\stackrel{H}{=}$ Cephalosporins cephamycins cephamycins $\stackrel{ROCHN}{=}$ CO₂H $\stackrel{QCH_3}{=}$ CO₂H $\stackrel{QCH_3}{=}$ CO₂H $\stackrel{QCH_3}{=}$ Co₂H $\stackrel{QCH_3}{=}$ Co₂H $\stackrel{QCH_3}{=}$ Cephamycins $\stackrel{QCH_3}{=}$ ROCHN $\stackrel{H}{=}$ CO₂H $\stackrel{QCH_3}{=}$ Cephamycins $\stackrel{QCH_3}{=}$ Co₂H $\stackrel{QCH_3}{=}$ Penems $\stackrel{QCH_3}{=}$ ROCHN $\stackrel{QCH_3}{=}$ ROCHN $\stackrel{QCH_3}{=}$ Co₂H $\stackrel{QCH_3}{=}$ Co₂H $\stackrel{QCH_3}{=}$ Co₂H $\stackrel{QCH_3}{=}$ Co₂H $\stackrel{QCH_3}{=}$ Penems $\stackrel{QCH_3}{=}$ Co₂H $\stackrel{QCH_3}{=}$ Penems $\stackrel{QCH_3}{=}$ ROCHN $\stackrel{QCH_3}{=}$ ROCHN $\stackrel{QCH_3}{=}$ ROCHN $\stackrel{QCH_3}{=}$ Co₂H $\stackrel{QCH_3}{=}$ Co₂H $\stackrel{QCH_3}{=}$ Co₂H $\stackrel{QCH_3}{=}$ Penems $\stackrel{QCH_3}{=}$ Penem

Konaklieva, Monika I. "Molecular targets of β -lactam-based antimicrobials: beyond the usual suspects." Antibiotics 3.2 (2014): 128-142.

Image credit: CNN

Deep Learning for Antibiotic Discovery

- A Graph Neural Network graph classification model
- Predict promising molecules from a pool of candidates

Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery." Cell 180.4 (2020): 688-702.

Summary

ML in the language of graphs:

- Node-level:
 - Churn
 - Life-time value
 - Next best action
- Link-level:
 - Product affinity
 - Recommendations
- Graph-level:
 - Fraud, money laundering

