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Abstract

With the widespread adoption of large-scale pretrained models such as GPT, 
BERT, and ViT in natural language processing and computer vision, model sizes 
and training complexity have increased exponentially. This growth has led to sig-
nificantly longer training times and soaring computational and financial costs. To 
address this challenge, we propose a comprehensive training acceleration frame-
work that significantly improves training efficiency with minimal loss in 
accuracy. Using BERT-Base on the AG News dataset as the baseline, we leverage 
NVIDIA’s official profiling tools—Nsight Systems and Nsight Compute—to 
perform a full-stack performance analysis, from system-level bottlenecks to 
kernel-level operator profiling. Our optimization pipeline includes mixed 
precision training, attention layer rewriting, model graph compilation, layer-wise 
parameter freezing, and gra-dient accumulation. These methods collectively yield 
a 5.07× speedup in training time while maintaining a negligible accuracy drop 
(within 0.05). This work of-fers a systematic methodology and empirical 
insights for improving the training efficiency of large models, especially in 
resource-constrained deployment and re-search scenarios.

1 Introduction

In recent years, large-scale pretrained models such as the GPT series, BERT, and ViT have achieved
widespread success across various subfields of artificial intelligence. As a result, model sizes have
expanded rapidly, and training complexity has increased dramatically. In practical applications, this
trend has led to a significant rise in training time and escalating resource costs—including computa-
tional power, energy consumption, and wall-clock time—posing serious challenges for researchers
and developers working under limited hardware conditions.

Although substantial progress has been made in model compression and inference acceleration,
systematic optimization of the training process remains relatively underexplored. In particular, how
to improve training efficiency without sacrificing model accuracy or architecture integrity, through
coordinated software–hardware optimization, is an important yet insufficiently addressed research
problem.

This work focuses on the following question: How can we systematically optimize the training
pipeline of large models to improve efficiency while maintaining accuracy?

To address this question, we construct a targeted performance optimization pipeline based on the
BERT-Base model trained on the AG News dataset for four-class text classification. Relying on
NVIDIA’s official profiling tools—Nsight Systems and Nsight Compute—we conduct multi-level
analysis of the training process, identifying key bottlenecks such as forward/backward propagation,
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optimizer steps, and a large number of fragmented CUDA kernels (e.g., GEMM and elementwise
operations).

Based on the profiling insights, we design and progressively implement the following optimization
strategies:

1. Mixed-Precision Training: Enabling Tensor Core acceleration for high-throughput matrix
multiplication and convolution operations;

2. Attention Layer Rewriting: Replacing the original attention module with the xFormers
implementation on NVIDIA RTX 3070, and using a custom fused attention kernel written
in Triton on RTX 4090 to reduce kernel launch overhead and memory traffic;

3. Model Compilation and Graph Optimization: Leveraging torch.compile() to per-
form operator fusion and optimize execution graphs;

4. Gradient Accumulation and Layer-Wise Unfreezing: Simulating large-batch training
under memory constraints via gradient accumulation, and dynamically unfreezing only the
(epoch+1) mod total layers-th Transformer layer per epoch while keeping the rest frozen;

5. Parallel Data Loading: Increasing the number of DataLoader worker threads to alleviate
I/O latency.

We perform ablation studies and combination comparisons for the above strategies to evalu-
ate their impact on training time and model performance. The final optimized configuration—
xFormers + mixed precision + model compilation + gradient accumulation + parameter unfreezing—
demonstrates substantial acceleration on the NVIDIA RTX 3070, achieving a 5.07× speedup with
a classification accuracy of 0.8849.

In summary, this paper proposes and validates a generalizable and practical training acceleration
framework that preserves model accuracy. Our findings not only offer a reproducible optimiza-
tion path for Transformer-based models, but also provide valuable insights for deployment in long-
sequence tasks and resource-constrained environments.

2 Related Work

2.1 Performance Profiling Methodologies

At the hardware level, NVIDIA Nsight Systems [4] reveals inefficient memory access patterns in
GEMM operations during attention computation via CUDA API instrumentation, while Huawei
Ascend Sprof [5] introduces a Fusion Opportunity Score to evaluate operator fusion potential on
heterogeneous architectures.

2.2 Computation and Memory Optimization

To address memory constraints, gradient checkpointing has advanced from static strategies [6] to
dynamic algorithms. Jain et al. [7]’s Smart Checkpointing reduces checkpoint counts by 30% in
72-layer Transformers through computational graph topology analysis.

Operator-level optimizations like FlashAttention [8] minimize DRAM accesses to theoretical limits
(O(N2) → O(N)) via tiling and shared memory, achieving 1.7× speedup in GPT-3 training. ZeRO-
Offload [9] pioneers CPU-GPU hybrid memory management, enabling 10× larger models on single
GPUs.

2.3 Parallelism and Communication Optimization

Model parallelism innovations have transformed large-scale training. Megatron-LM [10]’s tensor
parallelism splits matrix multiplications column-wise, optimizing AllReduce communication for
175B-parameter models on 8-GPU clusters. Alpa [11] automates parallel strategy search, dynami-
cally blending data, pipeline, and tensor parallelism.

Communication compression breakthroughs include 1-bit Adam [12] (94% traffic reduction via
error-compensated quantization) and PowerSGD [13] (80% less communication via low-rank gradi-
ent decomposition in ResNet-152).
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2.4 Emerging Directions

Recent work explores energy-aware optimization: Google’s Carbon-API [14] integrates training
carbon emissions into performance metrics via dynamic batch sizing. In quantization, LLM.int8()
[15] demonstrates lossless INT8 inference for 175B models, while FP8 mixed-precision training
[16] reduces energy consumption by 40% via dynamic scaling.

Compiler optimizations gain traction: XLA [17]’s auto-operator fusion cuts kernel launch overhead
by 3%, and TVM AutoTensorization [18] generates hardware-optimized GEMM implementations.

3 Method

3.1 Gradient Accumulation

In the standard BERT training workflow, model parameters are typically updated after each mini-
batch. While this allows for frequent optimization feedback, it can lead to excessive CUDA kernel
launches and suboptimal GPU utilization, particularly under small batch settings constrained by
memory limitations.

To improve training efficiency, this study adopts a gradient accumulation strategy. Instead of updat-
ing parameters after every mini-batch, gradients are accumulated over multiple steps (e.g., 4), and
the optimizer updates the parameters only after the specified accumulation interval. This approach
effectively increases the logical batch size without exceeding GPU memory capacity.

Specifically, for an accumulation step size of N :

• Gradients are computed and accumulated over N consecutive forward-backward passes;

• The loss is scaled by 1/N at each step to maintain numerical stability;

• After every N steps, a single optimizer.step() is performed, followed by opti-
mizer.zero grad();

This method effectively reduces kernel launch frequency, memory access overhead, and host-device
synchronization, thereby improving overall training throughput. It also enables large-batch training
under limited GPU memory conditions.

On the AG News text classification task, applying gradient accumulation resulted in an approximate
1.256× speedup per training epoch, while maintaining nearly identical test accuracy (accuracy drop
< 0.015). These results validate the effectiveness and stability of this optimization strategy in
memory-constrained environments.

3.2 Layer-wise Parameter Unfreezing

To further accelerate training and reduce GPU memory consumption, we adopt a dynamic layer
freezing strategy, in which only a subset of model parameters is updated during the early training
stages. We then progressively unfreeze the BERT encoder layers over training epochs. This ap-
proach significantly lowers training costs while preserving the pretrained knowledge embedded in
the model.

Specifically, we initially freeze all parameters of the BERT backbone (i.e., setting
requires grad=False for all model.bert.parameters()). Then, during each training epoch,
we dynamically unfreeze one Transformer encoder layer while keeping the rest frozen. The core
logic of this strategy is as follows:

1. Suppose the BERT encoder contains L layers, denoted as
{encoder.layer[0], . . . , encoder.layer[L− 1]};

2. At the beginning of the e-th epoch, we unfreeze the (L− ((e+1) mod L))-th layer, while
keeping all other layers frozen;

3. At the start of each epoch, we dynamically construct the optimizer (AdamW) based only
on parameters with requires grad=True, thereby avoiding unnecessary gradient compu-
tation and memory overhead.
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This mechanism effectively simulates a “shallow-to-deep” fine-tuning schedule, avoiding sudden
updates to all model layers in the early stages. It reduces training instability and promotes more
stable convergence.

Empirically, using only the layer-wise unfreezing strategy—i.e., updating one Transformer layer per
epoch—reduced the average training time per epoch from 456.66 seconds to 159.00 seconds on the
AG News classification task, yielding a 2.872× speedup. Meanwhile, model performance remained
stable, with only a marginal drop in test accuracy (approximately 0.002), demonstrating an excellent
trade-off between efficiency and performance.

3.3 Rewritten Attention Module and Combined Optimization Strategy

To improve the training efficiency and resource utilization of BERT-based text classification tasks,
a combined optimization strategy is employed. This strategy integrates a rewritten attention mecha-
nism with mixed-precision training and compiler-level optimizations. By leveraging both hardware
acceleration features and algorithmic improvements, the approach significantly reduces memory
consumption and improves computational throughput.

3.3.1 Rewritten Attention Mechanism

Conventional self-attention computation incurs substantial memory usage and redundant operations,
especially when processing long input sequences. The memory-efficient attention implementation
based on the xFormers library utilizes highly optimized CUDA kernels to drastically reduce inter-
mediate activation storage and duplicate computations. This fundamentally lowers memory footprint
and accelerates computation.

A custom XformersSelfAttention module is introduced, preserving the original model architec-
ture by explicitly copying the weights and biases of the query (Q), key (K), and value (V) projections.
The standard attention modules in each BERT encoder layer are replaced with this module to achieve
more efficient attention computation without affecting the model’s semantics.

3.3.2 Mixed-Precision Training

To further enhance computational efficiency, mixed-precision training is adopted. By performing
most operations in half-precision floating point (FP16), the method significantly reduces memory
usage and accelerates matrix operations via NVIDIA’s Tensor Cores, which are optimized for low-
precision computation. This technique increases training throughput while preserving model accu-
racy and reducing hardware demands.

3.3.3 model compilation

Compiler-level graph optimizations are enabled via PyTorch’s torch.compile functionality. This
utility automatically performs kernel fusion, inlines operations, and reduces Python runtime over-
head, contributing to both training and inference acceleration. In combination with the rewritten
attention mechanism and mixed-precision training, it forms a complete performance optimization
pipeline.

Together, these three techniques effectively address both computational and memory bottlenecks in-
herent in Transformer model training. On the AG News text classification task, this combined strat-
egy achieved a 1.375× speedup, with only a negligible drop in test accuracy (0.0014). These results
demonstrate that the proposed method substantially improves training efficiency while maintain-
ing strong model performance. The integration of attention mechanism rewriting, mixed-precision
training, and compiler optimization highlights the feasibility and practical value of this approach for
efficient Transformer training under resource constraints.

3.4 Fused Attention Kernel Optimization with Triton

After replacing the original attention mechanism with xFormers, we sought to further understand
and control the low-level operator behavior of the attention module in BERT. To this end, we imple-
mented a custom fused attention kernel using the Triton programming language. This kernel fuses
multiple operations—matrix multiplication, Softmax, Dropout, and value weighting—into a single
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GPU kernel, reducing launch overhead, minimizing global memory access, and improving memory
locality.

In standard BERT implementations, the attention module follows the formulation:

Attention(Q,K, V ) = Softmax
(
QK⊤
√
dk

)
V

This computation involves multiple intermediate matrices and kernel launches, making it a sig-
nificant bottleneck in training. Our custom Triton kernel fused softmax kernel introduces the
following key optimizations:

• Operator fusion: Combines QK⊤, Softmax, Dropout, and A@V into a single kernel to
avoid repeated memory I/O;

• Efficient memory access: Uses tl.load and tl.store to load Q, K, and V blocks into
shared memory, reducing cross-thread-block memory access;

• Dynamic mask support: Handles attention masks at runtime to prevent invalid attention
weights;

• Scalable grid parallelism: Implements a 3D grid structure over (batch ×
head, row block, col block) to support large-scale parallelism.

The full computation is divided into the following six stages:

(1) Program ID and index mapping

Each Triton thread block determines the associated (b, h) pair using its program ID, where pid0 =
b×H + h. Based on this, we compute the row and column block indices as:

r = r0 + {0, 1, . . . , Br − 1}, c = c0 + {0, 1, . . . , Bc − 1}

Here, Br and Bc denote the row and column block sizes, respectively.

(2) Q/K vector loading and type casting

Using the computed indices, query and key vectors are loaded from global memory:

Qr ∈ RBr×d, Kc ∈ RBc×d

To ensure numerical stability, these are cast to float32. Masks are applied to exclude out-of-bound
rows or columns.

(3) Attention score computation

We compute the scaled dot-product attention scores:

A =
Qr ·K⊤

c√
d

If an attention mask is present, masked positions are replaced with a large negative value (e.g.,
-65504) to suppress them in Softmax.

(4) Softmax normalization

The attention scores A are row-normalized using a numerically stable Softmax:

Pij =
exp (Aij −maxj Aij)∑
k exp (Aik −maxk Aik)

This produces normalized attention weights for each query vector.

(5) Output computation (weighted value vectors)

We compute the final output by applying the attention weights to the value vectors Vc ∈ RBc×d:

Or = P ·Vc

(6) Writing results to output buffer
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The final outputs Or are stored back into the preallocated output buffer using masked tl.store
operations to ensure index validity and memory safety.

When executed on an NVIDIA RTX 4090, this Triton-based attention kernel reduced the average
epoch training time from 365.00s to 286.33s, achieving a 1.36× speedup, with only a negligible
accuracy drop of 0.0014 on the test set. It is worth noting that due to architectural or driver con-
straints, the same implementation failed to progress on the NVIDIA RTX 3070, even though it ran
successfully on the RTX 4090.

3.5 Parallel Data Loading

To alleviate data I/O bottlenecks and improve GPU utilization, we adopt a parallel data loading
strategy.

Specifically, we configure PyTorch’s DataLoader with num workers=4, which spawns four sep-
arate worker processes to asynchronously prefetch training batches. This setup allows data for the
next batch to be loaded in parallel while the GPU is still computing gradients and updating parame-
ters, effectively avoiding the blocking overhead of single-threaded data loading.

The core idea is to overlap CPU-side data loading with GPU-side computation, thereby improving
the throughput of the entire training pipeline. Conceptually, the parallel loading process can be
represented as:

DataLoadernext = ParallelLoad(Batchi+1, num workers = 4)

In our experiments, enabling parallel data loading reduced the average epoch time from 456.66 sec-
onds to 441.33 seconds, yielding a modest but measurable 1.034× speedup. While the acceleration
is not as significant as that achieved by other strategies, this method provides a stable and efficient
data input foundation that complements more impactful optimizations such as gradient accumulation
and parameter freezing. Moreover, this approach is simple to implement, incurs negligible overhead,
and can be broadly applied to various training tasks—especially those with substantial data loading
costs, large batch sizes, or I/O-intensive pipelines.

4 Experiment

4.1 Experimental Design and Analysis

To evaluate the effectiveness of the proposed optimization strategies, experiments are conducted on
the BERT-base model using the AG News text classification task. The evaluation focuses on the
average training time per epoch and the final test accuracy. Additionally, NVIDIA’s NSight Systems
tool is used to profile and analyze the Top-5 GPU kernels before and after optimization.

The experimental setup includes the following components:

• Dataset and Task: The AG News dataset is used for evaluation. It consists of four balanced
categories. Each input sequence is truncated or padded to a maximum length of 50 tokens.

• Baseline Model: The baseline employs a standard fine-tuning procedure on BERT-base
without any performance optimization techniques.

• Optimization Strategies:
Gradient Accumulation: Gradients are accumulated over multiple steps before updating
the model, reducing optimizer invocation frequency and simulating large-batch training
under limited memory budgets.
Layer-wise Unfreezing: One encoder layer is unfrozen per training epoch, allowing shal-
low layers to ”warm up” before deeper layers are trained. This helps stabilize early training
and reduces unnecessary parameter updates and compute.
Attention Operator Rewriting: The native attention mechanism is replaced with fused
and memory-efficient operators from the xFormers library, significantly reducing kernel
fragmentation and memory overhead. Mixed precision and compilation optimizations are
also enabled.
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4.2 Baseline Analysis

In the baseline experiment, we trained the model on 96,000 samples and tested it on 7,600 samples.
The number of epochs was set to 3. The average accuracy achieved was 0.935, and the average
training time was 457 seconds.

To further investigate training bottlenecks, we profiled the model using Nsight Systems, identifying
the top five CUDA kernels with the highest performance impact. We then used Nsight Compute to
analyze each bottleneck in detail, aiming to explore potential optimization strategies.

Figure 1 shows the profiling results from Nsight Systems:

Figure 1: Nsight Systems profiling result of the baseline model

The top five performance-critical CUDA kernels identified are as follows:

• ampere sgemm 128x64 tn

• ampere sgemm 128x64 nn

• ampere sgemm 128x64 nt

• vectorized elementwise kernel

• ampere sgemm 64x64 nn

Next, we used Nsight Compute to analyze each of these kernels. Figure 2 illustrates the roofline
performance chart of the first kernel:

Figure 2: Roofline analysis of ampere sgemm 128x64 tn

The Nsight Compute analysis shows that the top time-consuming CUDA kernels are primarily
GEMM (General Matrix Multiply) operations, such as ampere sgemm 128x64 * and 64x64 nn,
which aligns well with the structure of Transformer models, particularly in the Attention and Feed-
Forward layers.

Additionally, the significant proportion of time spent in vectorized elementwise kernel sug-
gests that element-wise operations like LayerNorm and activation functions also consume a notable
portion of computation time. This indicates that kernel fragmentation is a non-negligible issue.

4.3 Ablation Study

An ablation study was conducted to assess the individual and combined contributions of the pro-
posed strategies.Table 1 summarizes the results, reporting the average training time per epoch, test
accuracy, relative speedup over the baseline, and the accuracy delta:
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Strategy Combination Avg Epoch Time (s) Test Accuracy Speedup Accuracy Change
(1) Gradient Accumulation 363.66 0.9230 1.256 -0.0123
(2) Layer-wise Unfreezing 159.00 0.9333 2.872 -0.0020

(3) Attention Rewrite 332.00 0.9339 1.375 -0.0014
(1) + (2) 153.00 0.9249 2.984 -0.0104
(1) + (3) 237.00 0.9304 1.627 -0.0049
(2) + (3) 93.66 0.8859 4.876 -0.0494

(1) + (2) + (3) 90.00 0.8849 5.074 -0.0504

Table 1: Comparison of Different Strategy Combinations

Figure 3 illustrates the variations in training time and test accuracy across different combinations
of optimization strategies, further highlighting the trade-off between training efficiency and model
performance.

The results show that although the combined strategy ((1) + (2) + (3) introduces a modest drop in
accuracy, it achieves over 5× training speedup, demonstrating strong practical value in scenarios
such as large-scale pretraining, rapid convergence, or cost-sensitive industrial deployments.

Figure 3: Speedup and Accuracy Change of Optimization Strategies

4.4 NSight Systems Kernel Analysis

To evaluate the low-level execution efficiency of the proposed optimization strategies, NVIDIA
NSight Systems was used to analyze the BERT training process. The execution times of the first five
training steps before and after optimization were compared. The optimized profiling trace is shown
in Figure 4.
Notably, the execution time of the first step increased significantly after optimization, primarily due
to the initial execution of torch.compile, which incurs overhead from graph capture and kernel com-
pilation. However, starting from the second step, the overall execution time decreased substantially,
indicating that the compilation optimizations had taken effect and delivered stable acceleration.
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Figure 4: Nsight Systems profiling result after Optimization

Further analysis was conducted on the optimized operator execution, identifying the top-5 GPU
kernels by runtime share:

• vectorized elementwise kernel<FillFunctor<int>> (75.0%)
• triton red fused dropout layer norm backward (7.3%)
• cutlass 80 tensorop f16 s16816gemm relu f16 128x128 32x4 tn align8 (3.5%)
• sm80 xmma gemm f16f16 f16f32 f32 tn n tilesize64x96x32 (2.8%)
• sm80 xmma gemm f16f16 f16f32 f32 tn n tilesize160x128x32 (2.4%)

The top-1 kernel after optimization, vectorized elementwise kernel<FillFunctor<int>>,
accounts for 75% of total execution time. This indicates that kernel fusion was highly effective,
resulting in much higher computational concentration and a significant reduction in kernel fragmen-
tation.

Additionally, several fused kernels generated by the Triton compiler were observed:

• triton red fused *, triton poi fused *, triton flash *

These results confirm that the attention module was successfully replaced with xFormers’
memory efficient attention, which leverages low-level kernel fusion to substantially reduce
fragmentation and improve execution efficiency.

5 Conclusion

This study used NVIDIA profiling tools to identify key bottlenecks in BERT training and design five
targeted optimization strategies.

First, three strategies were evaluated individually and together through ablation experiments, show-
ing their effects on training speed and accuracy. A fourth strategy using Triton to optimize the at-
tention kernel also achieved significant speedups. The fifth strategy focused on parallel data loading
to reduce I/O bottlenecks.

Combining the first three strategies achieved nearly a 5× training speedup with only a slight decrease
in accuracy, making it especially useful for large-scale pretraining and cost-sensitive tasks. Minor
accuracy losses could be recovered later with fine-tuning.

Challenges included limited sequence length and conflicts between attention optimizations and pa-
rameter freezing. Adaptive fine-tuning and careful trade-off choices can help address these issues.

Overall, this work shows that profile-driven, targeted optimizations can efficiently scale large-model
training under practical resource constraints.
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