
Personalized Image Generation Based on Diffusion
Models

Abstract

This paper explores personalized image generation using diffusion models,
specifi-cally focusing on fine-tuning the FLUX.1-dev model through parameter-
efficient methods. We conducted comprehensive experiments to optimize
hyperparame-ters such as learning rate, LoRA rank, and training steps,
evaluating outcomes with Face Distance Scores and CLIP Scores alongside
qualitative analyses. Ad-vanced analyses including ablation studies, interactive
Gradio demonstrations, and multi-person fine-tuning further validated our
approach. Our results demonstrate significant improvements in personalized
generation quality, highlighting critical factors influencing model performance
and underscoring effective methodologies for achieving high-fidelity
personalized outputs.

1 Introduction

Recent advancements in generative models, particularly diffusion models, have demonstrated sig-
nificant capabilities in image synthesis, generating high-quality visuals across diverse scenarios.
However, conventional diffusion models exhibit notable limitations in addressing personalized image
generation tasks, particularly in consistently reproducing specific individual identities or stylistic
nuances across varying contexts [1]. This limitation restricts their practical applicability, especially
in personalized entertainment, e-commerce, and social media sectors, which increasingly demand
highly individualized content generation capabilities.

Figure 1: Architecture of the diffusion model and sample outputs.

Motivated by recent developments such as GPT-4o’s remarkable text-to-image capabilities and
inspired by this semester’s deep learning course encompassing Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), Transformers, Generative Adversarial Networks
(GANs), Graph Neural Networks (GNNs), and particularly the innovative Diffusion Models, this
work aims to explore the personalization capabilities of diffusion-based generative models.

∗Equal contribution.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Specifically, our project focuses on fine-tuning the FLUX.1-dev diffusion model, selected after
evaluating multiple open-source foundational models based on their popularity and performance
metrics, including likes, downloads, and leaderboard rankings. Our personalization target is the
renowned football player Cristiano Ronaldo (CR7), using multiple high-resolution images covering
diverse angles and lighting conditions, sourced from publicly accessible platforms with no copyright
restrictions.

The contributions of our work are multifaceted. Firstly, we systematically explore hyperparameter
spaces, including learning rates, LoRA ranks, and training steps, through comprehensive experiments
to optimize model performance. Secondly, our technical approach rigorously adheres to software
engineering principles, particularly modularity and information hiding, resulting in structured and
maintainable project organization with automated multi-configuration training capabilities and de-
tailed error handling mechanisms. Thirdly, we implement and evaluate personalized image generation
using quantitative metrics such as Face Distance Score and CLIP Score, alongside qualitative analyses.

Additionally, we provide an interactive Gradio demo, facilitating intuitive exploration and evaluation
of personalized generation outputs. This not only demonstrates our methodological effectiveness
but also significantly enhances user engagement and practical applicability. Despite encountering
challenges such as substantial computational resource requirements and inherent limitations in
existing model architectures, our approach successfully demonstrates the feasibility and effectiveness
of personalized image generation with diffusion models.

In summary, our work advances the personalization capabilities of diffusion models by integrat-
ing rigorous experimentation, principled engineering practices, and interactive evaluation, thereby
contributing both methodologically and practically to the field of personalized generative modeling.

2 Related Work

2.1 Diffusion Models

Diffusion models represent a class of generative models that progressively denoise a noisy input image
over a series of steps to produce high-quality outputs [2]. These models learn the data distribution
through a self-supervised approach, leveraging image-text pairs without explicit human labeling.
Their training objective centers around reconstructing clean images from noisy versions, effectively
learning the inherent structural distribution of the data rather than explicit semantic labels.

2.2 FLUX.1-dev

FLUX.1-dev extends conventional diffusion models by integrating advanced multimodal architectures.
It combines CLIP and T5 encoders to extract semantic meaning from prompts, processing this
information through multi-layer MM-DiT and Single-DiT Transformer blocks. MM-DiT blocks
handle multimodal conditions such as image latent representations and textual prompts, while Single-
DiT blocks focus solely on latent diffusion modeling. These modules jointly manage temporal,
spatial, and conditional data, utilizing modulation mechanisms for efficient latent synthesis. The
VAE decoder finalizes the generation by mapping latent representations back into high-resolution
images, employing key techniques such as transposed convolutions, activation functions like Swish
and GELU, and batch normalization. FLUX thus advances from abstract semantic fusion to detailed
pixel-level refinement, enabling superior semantic control and image generation quality.

2.3 LoRA (Low-Rank Adaptation)

LoRA offers a parameter-efficient fine-tuning technique designed to overcome the computational
challenges of full-parameter tuning [3]. Exploiting the concept of intrinsic dimensionality, LoRA
decomposes weight increments into two smaller, low-rank matrices. Instead of adjusting the entire
weight matrix W0 ∈ Rm×n, LoRA fine-tunes by modifying matrices A ∈ Rm×r and B ∈ Rr×n,
significantly reducing the number of parameters and computational overhead.

2

Figure 2: Architecture of FLUX.1-dev model.

2.4 Personalization Techniques

Beyond LoRA, other notable personalization approaches include DreamBooth, which adapts diffusion
models to consistently generate a target individual within diverse contexts by explicitly modeling the
subject in specific scenarios. ControlNet further extends capabilities by incorporating additional con-
dition signals into the diffusion model, facilitating enhanced controllability over the generated output.
These methods, supported by Diffusers’ official scripts, collectively provide a robust framework for
personalized image generation tasks.

Together, these advancements underpin our project’s methodological choices and experimental setup,
enabling a comprehensive investigation of personalized image generation within diffusion model
frameworks.

3 Method

3.1 Model Selection

We systematically evaluated four prominent diffusion models: black-forest-labs/FLUX.1-
dev, stabilityai/stable-diffusion-xl-base-1.0, runwayml/stable-diffusion-v1-5, and CompVis/stable-
diffusion-v1-4. The evaluation criteria included download counts, star ratings, community recom-
mendations, fundamental capabilities, compatibility with fine-tuning and inference enhancement
techniques, and hardware constraints. After comprehensive consideration, FLUX.1-dev was selected
due to its superior multimodal semantic capabilities and compatibility with advanced fine-tuning
methods. However, our computational resources ultimately limited the fine-tuning method exclusively
to LoRA.

Figure 3: Comparison of Candidate Base Diffusion Models.

3

3.2 Data Preprocessing

We sourced multiple high-resolution images of the target individual from Pngfre, ensuring diversity
in angles and lighting conditions without background and copyright restrictions. These images
were subsequently cropped to a uniform resolution of 1024 × 1024 pixels using the Birme platform,
aligning with the resolution requirements for model fine-tuning.

Figure 4: Data Preprocessing – BirMe Cropping Interface.

3.3 Inference Parameter Experiment

To ensure optimal image generation quality and streamline subsequent hyperparameter experimen-
tation, we initially experimented with the inference parameter guidance_scale, which balances
the adherence to the prompt versus creativity in the output. We tested values of 3.5, 5, and 7.5 using
prompts such as cr7man wears a tank top and blazer and cr7man smiling at camera.
Empirical evaluations indicated the optimal guidance scale was 5, providing an ideal balance between
likeness to the original subject and image detail clarity.

gs = 3.5 5 7.5

Figure 5: Example of Inference Parameter Experiments.

3.4 Hyperparameter Experiments

Considering the official training script constraints where lora_alpha is hardcoded to match
lora_rank, we focused on three key hyperparameters:

4

Table 1: Hyperparameter configurations by experimental scenario
Scenario Exp. LR LoRA Rank Steps Scheduler

Extreme parameters
1 1e-3 8 500 cosine
2 1e-4 32 1500 cosine
3 5e-4 16 1000 cosine

Fixed-step variations

4 1e-3 8 1000 cosine
5 1e-4 32 1000 cosine
8 1e-3 32 1000 cosine
9 1e-4 8 1000 cosine

Step count effects 6 5e-4 16 500 cosine
7 5e-4 16 1500 cosine

Expressiveness vs. fast training 10 1e-3 32 500 cosine

LR scheduler impact 11 5e-4 16 1000 constant

• Learning rate (learning_rate): Influences convergence speed and risk of overfitting.

• LoRA rank (lora_rank): Determines model capacity and complexity.

• Maximum training steps (max_train_steps): Directly affects training duration and
model saturation.

We defined manageable parameter ranges as 1e-3, 5e-4, 1e-4, 8, 16, 32, and 500, 1000, 1500.
Instead of performing exhaustive grid searches (27 combinations), we strategically reduced the set
to 11 representative experiments inspired by branch coverage, condition coverage, and Modified
Condition/Decision Coverage (MCDC) testing techniques. This set included extreme cases (fastest vs.
strongest representation), combinations prioritizing either learning speed or representational capacity,
isolated effects of training steps, and specific investigations into learning rate schedulers (cosine
versus constant).

Notably, our hyperparameter experimentation benefits from:

• A unified JSON configuration for consistency, controlled through separate execution scripts
to decouple experiment management.

• Utilization of subprocesses for training execution, enabling real-time streaming and logging
of training outputs via pipe connections directly to the console.

3.5 Evaluation Metrics

Our evaluation employed multiple metrics to quantify image generation fidelity:

Face Distance Score: Utilizing the facenet_pytorch library, we first employed Multi-task Cas-
caded Convolutional Networks (MTCNN) for face detection and cropping. Subsequently, Incep-
tionResnetV1 extracted face embedding features. The Face Distance Score was computed as the
Euclidean distance between the mean embedding vector of fine-tuning images (benchmark) and the
mean embedding vector of generated images from each hyperparameter set.

CLIP Score: To quantify image-text consistency, the CLIPProcessor preprocessed both images and
textual prompts uniformly, and the CLIPModel calculated their similarity scores. The mean similarity
score for generated images across various prompts provided the CLIP Score, reflecting semantic
alignment quality.

Number of Faceless Images: This metric was assessed visually, counting the images that failed to
accurately depict recognizable faces.

Collectively, these methodological approaches provided robust and insightful analyses to optimize
personalized image generation effectively.

5

Algorithm 1 Face Distance Score

1: Input: target dir Dtgt, experiment dir Dexp

2: Initialize MTCNN detector and InceptionRes-
netV1 on device

3: f̄ ← MeanEmbedding(Dtgt)
4: for all image x in Dexp do
5: fx ← ExtractEmbedding(x)
6: dx ← ∥f̄ − fx∥2
7: end for
8: return FDScore← 1

|Dexp|
∑

x dx

Algorithm 2 CLIP Score

1: Input: prompts P , experiment dir Dexp

2: Initialize CLIPProcessor & CLIPModel on
device

3: S ← ∅
4: for all prompt p in P do
5: for all image x in Dexp do
6: preprocess (p, x) via CLIPProcessor
7: sp,x ← CLIPSimilarity(p, x)
8: S ← S ∪ {sp,x}
9: end for

10: end for
11: return CLIPScore← 1

|S|
∑

s∈S s

4 Experiment

4.1 Experimental Results

We evaluated the performance of each hyperparameter configuration across 11 distinct prompts. For
each set of hyperparameters, we computed the Face Distance Scores and the CLIP Scores, comple-
mented by qualitative visual assessments. Through this rigorous comparative analysis, we identified
the four optimal hyperparameter configurations based on superior quantitative and qualitative out-
comes.

Figure 6: Evaluation Results.

4.2 Experimental Result Analysis

Learning Rate Analysis: By comparing experiments 4, 9, and 5, 8, we observed that under consistent
LoRA rank conditions, a higher learning rate (1e-3) consistently achieved lower Face Distance Scores
and higher CLIP Scores. This indicates that, given appropriate ranks and training durations, higher
learning rates substantially outperform lower rates. Intermediate learning rates could mitigate their
disadvantages through increased representational strength and extended training periods, whereas the
lowest learning rates consistently yielded inferior results, regardless of other parameter adjustments.

LoRA Rank Analysis: Comparisons between experiments 4, 8 and 5, 9 revealed that at identical
learning rates, higher LoRA ranks significantly improved Face Distance Scores. However, changes
in CLIP Scores were marginal, likely due to the inherent strong cross-modal capabilities of the
foundational model. Higher LoRA ranks thus enhance feature comprehension, significantly benefiting
Face Distance outcomes.

Training Steps Analysis: Analysis indicated that, with learning rate set to 5e-4 and rank at 16, model
convergence typically occurred around 1000 steps, with no substantial improvements beyond this
point. Conversely, at a lower learning rate (1e-4) and higher rank (32), prolonged training beyond
optimal convergence points led to overfitting, adversely impacting Face Distance scores without
significantly affecting CLIP Scores.

6

Figure 7: Evaluation of Learning Rate.

Figure 8: Evaluation of LoRA Rank.

4.3 Advanced Analysis: Ablation Study

Given the robustness and inherent knowledge of the FLUX model, we conducted an ablation study to
ascertain whether model performance improvements stemmed from genuine learning of personalized
features or internal token substitution strategies. Specifically, we removed the personalized training
effect of the "cr7man" token and its referential meaning within the original model to evaluate the actual
impact of fine-tuning. Results indicated substantial performance differences between models before
and after fine-tuning with the "cr7man" token. Conversely, prompts explicitly naming "Cristiano
Ronaldo" yielded minimal variation, confirming that our fine-tuning procedure effectively encoded
personalized characteristics. Further validation was provided by introducing "David Tao" or "Tao
Zhe," a figure unknown to the original model, demonstrating significant performance gains post
fine-tuning and reinforcing the efficacy of our personalized fine-tuning approach.

4.4 Advanced Analysis: Gradio Demo

To enhance the interactivity and practical applicability of our approach, we developed a Gradio-based
interactive demo. This demo allows dynamic loading of fine-tuned models, on-the-fly addition of
training images, and immediate scoring of generated images using CLIP and Face Distance metrics,
facilitating intuitive exploration and user-driven evaluations.

Figure 9: Evaluation of Training Steps.

7

4.5 Advanced Analysis: Multi-Person Group Photos

We extended our methodology by jointly fine-tuning the model on two distinct individuals, Cristiano
Ronaldo and David Tao, subsequently merging these fine-tuned weights. The resulting capability
to generate coherent multi-person group images demonstrated the robustness and flexibility of our
personalization techniques, yielding visually compelling and realistic multi-individual compositions.

5 Conclusion

In this study, we successfully demonstrated personalized image generation leveraging the FLUX.1-
dev diffusion model. Strategic selection and thorough optimization of hyperparameters, coupled with
robust evaluation metrics, established clear insights into the impacts of learning rate, LoRA rank, and
training steps. Ablation studies clarified the genuine learning outcomes attributable to our fine-tuning
procedures, while advanced demonstrations such as Gradio interactivity and multi-person group
photo generation showcased practical applicability and extensibility. This work confirms the efficacy
of our personalized fine-tuning methodology and presents a solid foundation for future advancements
in personalized image synthesis with diffusion models.

References

[1] Alexander, J.A. & Mozer, M.C. (1995) Template-based algorithms for connectionist rule extraction. In
G. Tesauro, D.S. Touretzky and T.K. Leen (eds.), Advances in Neural Information Processing Systems 7, pp.
609–616. Cambridge, MA: MIT Press.

[2] Bower, J.M. & Beeman, D. (1995) The Book of GENESIS: Exploring Realistic Neural Models with the
GEneral NEural SImulation System. New York: TELOS/Springer–Verlag.

[3] Hasselmo, M.E., Schnell, E. & Barkai, E. (1995) Dynamics of learning and recall at excitatory recurrent
synapses and cholinergic modulation in rat hippocampal region CA3. Journal of Neuroscience 15(7):5249-5262.

A Appendix / supplemental material

8

Chosen Exps

9

All Exps

10

B Early Diffusion Models: Basic Principles

Diffusion models are generative models that learn to reverse a gradual noising process. The forward
diffusion process gradually adds Gaussian noise to data over T timesteps:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI)

where βt is a variance schedule. The forward process can be written in closed form:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I)

where ᾱt =
∏t

s=1(1− βs).

The reverse process learns to denoise:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))

The training objective minimizes the variational lower bound:

L = Ex0,ϵ,t[|ϵ− ϵθ(xt, t)|2]

where ϵ ∼ N (0, I) and xt =
√
ᾱtx0 +

√
1− ᾱtϵ.

C FLUX Model Architecture

FLUX represents a state-of-the-art text-to-image diffusion model that incorporates several architec-
tural innovations:

Flow Matching Framework:

LFM = Et,x0,x1
[|vθ(xt, t)− (x1 − x0)|2]

with xt = tx1 + (1− t)x0.

Multi-Modal Architecture integrates:

• Text Encoder: T5-XXL

• Vision Transformer: DiT

• Cross-Attention:

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V

D Low-Rank Adaptation (LoRA)

LoRA adds trainable low-rank matrices to adapt weights:

W = W0 +BA

where B ∈ Rd×r, A ∈ Rr×k.

Forward pass:
h = W0x+BAx

Advantages:

• Parameter efficiency: r(d+ k)≪ dk

• Modular adaptation

• No extra inference cost when merged

11

E Textual Inversion

Textual Inversion learns a new pseudo-token v∗ using:
LTI = Ex,t,ϵ[|ϵ− ϵθ(xt, t, P (v∗))|2]

Steps:

1. Initialize pseudo-word S∗

2. Freeze model θ
3. Optimize v∗

4. Embed in prompt: "A photo of S∗"

F DreamBooth

DreamBooth fine-tunes the whole model with:
LDB = E[|ϵ− ϵθ(xt, t, c)|2] + λE[|ϵ− ϵθ(x

′
t, t, cpr)|2]

Terms:

• Unique identifier (e.g., "sks")
• Class noun (e.g., "person")
• Prior preservation to prevent drift

G Custom Tokens

Extend embedding with:
Enew = [Eoriginal;Ecustom]

Initialization:

1. Random: N (0, σ2I)

2. Based on similar tokens
3. Learned via Textual Inversion

Training:
LCT = E[|ϵ− ϵθ(xt, t, f(c, Enew))|2]

H Prompt Tuning

Tune prompt embeddings P ∈ RL×d:
LPT = E[|ϵ− ϵθ(xt, t, [P ;E(c)])|2]

Gradient:
P ← P − α∇PLPT

Types: Hard (tokens) vs Soft (embeddings)

I ControlNet

Adds conditioning through spatial control:
yc = F(x; Θ) + Z(F(x+ Z(c; Θz1); Θc); Θz2)

Training:
LCN = E[|ϵ− ϵθ(xt, t, ctext, ccontrol)|2]

Controls: Edges, depth, pose, segmentation.

12

J Token Merging (ToMe)

Reduce tokens by merging:

Si,j =
fT
i fj
|fi||fj |

, fmerged = αfi + (1− α)fj

Reduction:
Nl = N0 · rl, r ∈ (0, 1)

K Prompt Mixing

Mix prompts for compositional generation:

Linear interpolation:
cmix =

∑
wici,

∑
wi = 1

Attention mixing:
Amixed =

∑
wiAi

Classifier-free guidance:

ϵmix = ϵθ(xt, t, ∅) +
∑

wisi(ϵθ(xt, t, ci)− ϵθ(xt, t, ∅))

Regional prompting:
ϵ =

∑
Mr ⊙ ϵθ(xt, t, cr),

∑
Mr = 1

Temporal mixing (video):
ct = (1− α(t))cstart + α(t)cend

where α(t) controls transition timing.

References
[1] Xulu Zhang, Xiaoyong Wei, Wentao Hu, Jinlin Wu, Jiaxin Wu, Wengyu Zhang, Zhaoxiang

Zhang, Zhen Lei, and Qing Li. A survey on personalized content synthesis with diffusion models.
arXiv preprint arXiv:2405.05538, 2024.

[2] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

[3] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

13

	Introduction
	Related Work
	Diffusion Models
	FLUX.1-dev
	LoRA (Low-Rank Adaptation)
	Personalization Techniques

	Method
	Model Selection
	Data Preprocessing
	Inference Parameter Experiment
	Hyperparameter Experiments
	Evaluation Metrics

	Experiment
	Experimental Results
	Experimental Result Analysis
	Advanced Analysis: Ablation Study
	Advanced Analysis: Gradio Demo
	Advanced Analysis: Multi-Person Group Photos

	Conclusion
	Appendix / supplemental material
	Early Diffusion Models: Basic Principles
	FLUX Model Architecture
	Low-Rank Adaptation (LoRA)
	Textual Inversion
	DreamBooth
	Custom Tokens
	Prompt Tuning
	ControlNet
	Token Merging (ToMe)
	Prompt Mixing

