A Systematic Study of KV Cache Management for
Efficient LLM Inference

Abstract

Key-value (KV) caching accelerates inference in transformer-based large-language
models (LLMs) by storing attention states for reuse during decoding. However, as
sequence lengths and concurrent requests grow, managing limited cache memory
becomes a critical bottleneck. In particular, the choice of eviction and request
scheduling policies strongly affects cache efficiency. We present a systematic
study of KV cache management under memory constraints. Using a configurable
simulator, we evaluate classic (LRU, LFU) and hybrid eviction strategies, as well as
scheduling heuristics across synthetic and real-world LLM workloads. Our results
show that the eviction policy has the greatest impact on the cache hit rate, with LRU
performing well and a simple hybrid strategy providing further gains under large
cache sizes. In contrast, the request scheduling order has only marginal effects in
single-node settings. These findings offer practical guidance for the deployment of
LLMs more efficiently and highlight opportunities for future adaptive or learned
cache management approaches.

1 Introduction

Transformer-based Large Language Models (LLMs) have become central to modern NLP, enabling
impressive performance across diverse tasks. To accelerate inference, many systems leverage KV
caching, which stores previously computed key and value tensors from attention layers. This avoids
redundant computation during autoregressive generation, significantly reducing latency (see Figure|T).

However, KV caching introduces new memory challenges. Its footprint grows with sequence length,
attention heads, and layer count. In long-sequence or high-throughput settings, cache memory can
quickly become a bottleneck. Once fully operational, the system must remove existing entries,
making the design of the eviction strategy critical. A high cache hit rate means fewer recomputations
and faster inference.

This work explores how to manage the KV cache under memory constraints. We investigate a range
of eviction and request scheduling strategies, and evaluate them using a flexible simulator across
both synthetic and real-world workloads. Our results highlight the strengths of classic policies like
LRU, and show that a lightweight hybrid strategy can further improve performance. We also analyze
when scheduling order matters, and how cache-aware prioritization may help. Our main contributions
are threefold: (1) We design and implement a flexible simulation framework for studying KV cache
management. (2) We provide the first systematic comparison that decouples the effects of eviction
and scheduling policies. (3) Our empirical results offer direct, practical guidance, demonstrating that
optimizing the eviction policy yields significantly higher returns than complex request scheduling in
single-node environments.

Preprint. Under review.

) 1

Sample Sample Sample Sample
Head Head Head Head
I T]‘ KV cache T ‘[I
FFN FFN FFN FFN
A ol i "
i Kver ’ - Attn [Attn e Attn
) vey || TTTTO R | |
x .
() v !
Prefill Decode step 1 Decode step2 ++v-:- Decode step s

Figure 1: Illustration of the KV Cache mechanism during the decoding steps of a Transformer
LLM. The cache stores K and V pairs for each token, which are then used by subsequent attention
computations.

2 Related Work

The efficiency of large language model (LLM) inference is fundamentally tied to the management of
the Key-Value (KV) cache. Introduced as part of the Transformer architecture [5]], the KV cache stores
the key and value vectors from the self-attention mechanism for all preceding tokens in a sequence.
This prevents costly re-computation during the autoregressive generation of each new token. However,
the memory footprint of this cache grows linearly with the sequence length and batch size, rapidly
becoming the primary bottleneck in LLM serving. As detailed by [3], this memory pressure limits
context length and throughput, creating a critical need for intelligent cache management strategies
that can maximize the utility of limited GPU memory. Our work directly addresses this challenge by
focusing on the eviction policies for a shared KV cache.

The core of our investigation lies in adapting and designing cache eviction policies for the unique
workload of LLM inference. The problem of cache replacement is well-studied in classical computer
systems, with algorithms like Least Recently Used (LRU) and Least Frequently Used (LFU) providing
foundational principles for managing finite resources. In the context of LLMs, these policies can
be applied to prefix caching, where the KV states of common prompts (e.g., system instructions or
shared documents) are stored for reuse across multiple requests. While a simple LRU policy offers a
reasonable baseline, it may not be optimal, as it fails to consider factors like the length of a prefix
(its re-computation cost) or its global popularity. This motivates our exploration of both classical
algorithms and novel hybrid strategies tailored to the specific cost-benefit trade-offs in KV cache
management.

State-of-the-art LLM serving systems have provided sophisticated memory management frameworks
that serve as a foundation for advanced caching policies. A landmark contribution is Paged Attention,
introduced by the vLLM system [[1]], which virtualizes the KV cache into non-contiguous blocks,
enabling efficient prefix sharing. Other systems like Orca [6] have focused on scheduling to improve
resource utilization. More recently, architectures like Mooncake [4] push this further, explicitly
trading larger storage resources—potentially across memory tiers—for reduced computation by
preserving more KV cache history. While these cutting-edge systems focus on engineering novel
architectures to directly boost performance, our work takes a complementary path. We do not aim to
build a new high-performance system, but rather to conduct a systematic exploration and comparative
analysis of various eviction strategies within a controlled environment. Our goal is to illuminate
the fundamental trade-offs of these policies, providing insights into their behavior under different
workloads, rather than maximizing raw performance.

3 Method

To systematically evaluate KV cache strategies in LLM inference, we design a modular simulation
framework that mimics real-world serving conditions, tracks cache state and requests over time, and
supports pluggable eviction and scheduling policies. An overview of the architecture is shown in

Figure

Processing Flow (AR

Request
Dataset

load
Request

Seque
d
Core System Components.
Scheduling

optimize order

Cache.

Lookup, Cache Strategy Request Scheduler —
miss. hit Cache
suppor Strategy Scheduler

pport
[Eviction] feleass] [Compute] [Return Hit] query [Trie . R,
Strategy Jache fuil L__and Cache Prefix e UL implement
LRU LFU Hybrid FIFO Shortest First Longest First Reuse-Aware
Strategy Strategy Strategy Scheduler Scheduler Scheduler Scheduler
OUPUt (™~ Galculate
Hit Rate.

load

Result Analysis
and Visualization

Figure 2: Architecture of the cache simulation framework. The request scheduler determines
execution order; the cache simulator performs token-wise decoding and interacts with the KV store;
the eviction policy selects sequences to evict when the cache exceeds capacity. Prefix-sharing is
handled via a hash-based Trie index.

3.1 Simulation Framework

At a high level, the simulator reads token sequence requests from dataset traces, schedules their
execution, and simulates token-by-token decoding. During each step, it performs cache lookup for
the required key-value (KV) pairs. On cache hits, KV states are reused; on misses, they are computed
and inserted into the cache. If insertion exceeds memory limits, the active eviction policy is invoked
to free space.

Internally, the simulator manages three modular components: the core engine tracks simulation time
and maintains the global request queue and cache state; the eviction policy module implements the
logic for selecting which cached sequences to remove; and the request scheduler determines request
execution order. Each module can be independently configured to enable controlled comparisons
across strategies.

3.2 Prefix Sharing via Trie-Based Indexing

To exploit prefix reuse across requests (e.g., shared prompts or contexts), we implement a Trie-based
cache index. Each node in the Trie represents a token (or its hashed prefix), and paths correspond to
token sequences. This enables efficient lookup and sharing of common prefixes, which are critical in
high-throughput serving.

To avoid storing raw token sequences, we apply a prefix hashing scheme: each token contributes
to a cumulative hash that uniquely represents its path. For a sequence [¢1, to, t3], we compute hash
IDs recursively: hy = H(t1), ho = H(hy + t2), and so on. Sequences that share prefixes thus share
paths in the Trie and their cached KV blocks.

Cache entries are stored in fixed-size blocks, typically corresponding to a fixed number of tokens
(e.g., 512). A cached sequence may span multiple blocks. This block granularity simplifies space
accounting and eviction, as we track cache size at the block level rather than per-token.

3.3 Eviction Strategies

We implement and compare three eviction strategies. The first is Least Recently Used (LRU), which
removes the sequence that has not been accessed for the longest time. Each Trie node tracks its last
access timestamp, and eviction targets the least-recently used leaf path.

The second strategy is Least Frequently Used (LFU), which evicts the sequence with the lowest
access count. Counters are incremented on each lookup, and eviction removes the least-used entry.

To balance multiple reuse signals, we introduce a Hybrid strategy that combines access frequency,
sequence length, and recency into a composite score:

length
value — 5a8¢ < ‘ength
1 + recency

Token Blocks(512 Tokens) Cache Storage

Request 1 Request 2 root
a b c d e a b d
e e S
1 | 1 | 1 ' | 1 1
| Ashash(a) | B=Hash(Atb) | CeHash(B+c) | DsHash(Ctd) | EHash(D+e) ! | AcHash(@) | BeHash(Ath) | FeHash(B+d) |
R MU I e A A S A
A B C D E A B F

Figure 3: Example of prefix hashing and Trie construction for two input sequences. Request
1: [a,b,c,d,e], and Request 2: [a, b, d] are recursively hashed and inserted into a Trie structure.
Nodes represent hash values of prefixes. The shared prefix [a, b] is stored once, allowing efficient
memory reuse and lookup. This structure supports fast prefix matching and compact representation
of overlapping token sequences in the KV cache.

Sequences with the lowest value are evicted first. This formulation favors entries that are frequently
accessed, long, and recently used—properties that indicate high potential for reuse.

Eviction is triggered whenever inserting new KV blocks would exceed the cache’s total capacity. The
affected entries are removed from both the Trie and the underlying block storage.

3.4 Request Scheduling Strategies

In concurrent serving scenarios, the order in which requests are processed can impact cache locality.
To investigate this, we implement four scheduling strategies.

The default is FIFO, where requests are served in arrival order. We also experiment with length-based
strategies: Shortest First, which prioritizes short sequences to quickly release cache resources; and
Longest First, which prioritizes longer sequences that may populate the cache with reusable prefixes.

Finally, we design a Reuse-Aware scheduler. Before processing, it estimates prefix overlap between
pending requests and the current cache state using prefix lookup. Requests with higher overlap are
prioritized, increasing the chance of immediate cache reuse. Detailed algorithm is shown in the
appendix [I]

It is important to note that scheduling only influences request order, not eviction decisions. However,
by improving temporal locality among similar requests, it can indirectly raise hit rates.

4 Experiments

We conduct extensive simulations to evaluate the effectiveness of different KV cache eviction and
request scheduling strategies. Our experiments aim to answer three core questions: (1) Which eviction
strategy achieves the highest cache hit rates across diverse workloads? (2) Does request scheduling
meaningfully impact cache efficiency? (3) How do cache size and workload characteristics influence
performance?

4.1 Datasets and Setup

We evaluated our system on both synthetic and real-world datasets, summarized below.

LooGLE LongDep-QA [2] is a synthetic benchmark composed of long-form question-answering
pairs with an average prefix reuse rate of 91%. Sequences are randomly shuffled and grouped into
batches to simulate concurrent requests. MoonCake Traces [4]] include realistic token traces extracted
from deployed LLM serving platforms. Table[I]lists the details about the datasets that we care most
about.

Table 1: Description of datasets used in the experiments. Prefix reuse rates are estimated based on
trace analysis.

Dataset Name Description Prefix Reuse (%)
LooGLE LongDep-QA Synthetic long-form question-answering pairs 91%
conversation_trace Interactive user sessions from MoonCake 40%
toolagent_trace Multi-turn tool-using agents from MoonCake 59%
synthetic_trace Diverse generated workloads from MoonCake 66%
mooncake_trace A mixed aggregate of all above types 50%

Each request is treated as a token sequence. Cache performance is measured by block-level hit ratio:

KV blocks reused

Hit Ratio = .
fhRato total KV blocks requested

We evaluate all combinations of eviction (LRU, LFU, Hybrid) and scheduling (FIFO, Shortest,
Longest, Reuse-aware) strategies, under multiple cache sizes (100, 1k, 10k, 100k blocks), yielding
over 300 configurations.

4.2 Eviction Strategy Evaluation

Figure 4| shows cache hit rates for LRU, LFU, and Hybrid policies across datasets and cache sizes.
Several trends emerge.

First, LRU and Hybrid consistently outperform LFU, especially under small cache budgets. LFU
struggles to adapt to the dynamic and bursty reuse patterns typical in LLM serving, often achieving
less than half the hit rate of LRU.

Second, while LRU offers strong baseline performance, our Hybrid strategy slightly improves over
LRU at large cache sizes, particularly on traces with longer sequences and more frequent reuse. The
inclusion of usage frequency and sequence length in Hybrid provides finer control over eviction
prioritization.

Third, the impact of cache size is significant. As capacity increases, all strategies improve, but Hybrid
gains faster, suggesting it makes better use of the additional memory.

4.3 Scheduling Strategy Evaluation

We next isolate the effect of scheduling by comparing strategies under fixed eviction policies. Figure[5]
presents results on the conversation_trace dataset.

Overall, scheduling has a limited impact on cache hit rates in our single-node simulator. Across all
settings, differences between FIFO, Shortest, Longest, and Reuse-aware scheduling were typically
under 5%.

Nonetheless, the Reuse-aware scheduler shows marginal gains in many cases. By prioritizing requests
with high prefix overlap, it improves hit rates especially when request arrival is bursty and the cache
is moderately sized.

4.4 Summary of Best Results

Table E] summarizes the best hit rates achieved on each dataset under small (100-block) and large
(10k-block) cache configurations. In all cases, the Hybrid eviction policy, often paired with FIFO or
Reuse-aware scheduling, yields the highest hit rates.

These results reinforce that cache strategy effectiveness depends not only on algorithmic design but
also on trace characteristics. While eviction policy dominates overall performance, scheduling may
become more important in multi-node or distributed scenarios.

Dataset: conversation_trace

Dataset: longdep_qa_hash_shuffle

5| Eviction « | Eviction
—e— hybrid —e— hybrid
30 Ifu Ifu
—— Iru “— Iru
60
g S
< <
2 2
;2‘ 20 ;‘5 40
T s =
20 4
10
5 o]
Cache Size Cache Size
Dataset: synthetic_trace Dataset: toolagent_trace
Eviction 71 Eviction
60
—e— hybrid —e— hybrid
Ifu © Ifu
01— Iru T —— Iru
g 40 g 45
=t =t
0 2
=1 B 40
== =s
20
35
10
0 30 4

p
%
v

p
%, 1

,

4

2
%

P

%,]
%

Cache Size

& N
§ §
& §
$ &

Cache Size

Figure 4: Cache hit rate comparison of LRU, LFU, and Hybrid eviction strategies across four
workloads and multiple cache sizes. Hybrid consistently matches or exceeds LRU, while LFU lags
behind, especially in smaller cache regimes.

Table 2: Best-performing strategy combinations and hit ratios (%) for small and large cache sizes.

Dataset Small Cache (100) Large Cache (10k)
Strategy (Evict/Sched) Hit (%) Strategy (Evict/Sched) Hit (%)
conversation_trace hybrid/reuse 4.19 hybrid/reuse 21.25
LooGLE LongDep-QA hybrid/longest 3.18 hybrid/fifo 83.62
mooncake_trace hybrid/reuse 33.87 hybrid/reuse 46.10
synthetic_trace hybrid/fifo 0.72 hybrid/fifo 42.42
toolagent_trace hybrid/fifo 33.84 hybrid/reuse 46.09

5 Conclusion

We presented a systematic evaluation of KV cache management strategies for Transformer-based
LLM inference. Using a modular simulation framework, we compared classic (LRU, LFU) and
hybrid eviction policies, as well as multiple request scheduling algorithms. Experiments across
both synthetic and real-world traces showed that eviction strategy has the dominant effect on cache
efficiency, while scheduling offers only marginal gains in single-node settings.

Among eviction policies, LRU provides strong baseline performance, and our proposed Hybrid
strategy slightly improves hit rates in larger cache regimes by incorporating usage frequency and
sequence length. LFU consistently underperforms due to its slow adaptation to changing reuse
patterns.Request scheduling strategies, including length-based and reuse-aware variants, had limited

impact on hit rates. While reuse-aware scheduling showed some benefit under bursty workloads, the
effect remained secondary to eviction logic.

conversation_trace - LRU conversation_trace - LFU conversation_trace - HYBRID

351 25 3 Scheduler
— 30 30 —e— fifo
x
< s 4 0 25 longest
-g —=— shortest
= 20 15 0
~ —— reuse
= 15 15
jan} 10
10 10
54 5 5
N N N N N N
N & & & $ & & \QQ@“ N & & \Q@@
longdep_qa_hash_shuffle - LRU longdep_qa_hash_shuffle - LFU longdep_qa_hash_shuffle - HYBRID
80 4 80 80
~
§ 60 - 60 60
£
S 40 4 a0 40
-4
I 20 4 20 20
01 T T T 0 T T T 0 T
NI & & \@“é\ & & & \QQ@“ NI & & &
synthetic_trace - LRU synthetic_trace - LFU synthetic_trace - HYBRID
60 60 60
/: 50 50 50
=
E " 10 40
T 30 30 30
-4
=20 20 20
=
10 10 10
04 0 0
N N N N N N N
NI & & & N & & \@@“ N & & \\\@@
Cache Size Cache Size Cache Size

Figure 5: Impact of scheduling strategies under fixed eviction policies. The Reuse-aware scheduler
slightly outperforms naive orderings (FIFO, Shortest, Longest), though absolute gains are modest in
the single-node setup.

This study provides practical insights for the deployment of KV-cached LLMs under memory
constraints and highlights the need to optimize policies based on workload characteristics.

Limitations. Our experiments assume a single-node cache shared by all requests. In distributed
serving settings, where the cache is partitioned or partially replicated, scheduling and reuse patterns
may interact more complexly. In addition, the hybrid score formulation, currently heuristic, may
benefit from further optimization or learning-based tuning.

Future directions. One natural extension is to explore adaptive eviction policies that adjust behavior
based on online access statistics. Another is to integrate learned predictors, for example, lightweight
models that estimate the future reuse of KV sequences. Finally, moving beyond simulation, evaluating
cache policies in live-serving systems with real latency measurements would offer deeper practical
validation.

References

[1] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Jean Kossaifi, Anima Anandkumar, and Christos
Kozyrakis. Efficient memory management for large language model serving with pagedattention.
In Proceedings of the 29th ACM Symposium on Operating Systems Principles, SOSP °23, page
411-426, New York, NY, USA, 2023. Association for Computing Machinery.

[2] Jiaqi Li, Mengmeng Wang, Zilong Zheng, and Muhan Zhang. Loogle: Can long-context language
models understand long contexts? arXiv preprint arXiv:2311.04939, 2023.

[3] Reiner Pope, Sholto Zhu, Adebayo Adebayo, Myle Gottardi, Tim Feng, Shuming Shen, and
Abhay Patwardhan. Efficiently scaling transformer inference. In Proceedings of the 6th MLSys
Conference, 2023.

1
2
3

D-TE-CREEN

10
11
12
13
14
15
16
17

18

[4] Ruoyu Qin, Zheming Li, Weiran He, Jialei Cui, Feng Ren, Mingxing Zhang, Yongwei Wu,
Weimin Zheng, and Xinran Xu. Mooncake: Trading more storage for less computation — a
KVCache-centric architecture for serving LLM chatbot. In 23rd USENIX Conference on File
and Storage Technologies (FAST 25), pages 155-170, Santa Clara, CA, February 2025. USENIX
Association.

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, volume 30, 2017.

[6] Xupeng Yu, Zirui Geng, Min Li, Yuxuan Tian, Ziyu Zhang, Zhe Chen, and Shucheng Zheng. Orca:
A distributed serving system for transformer-based generative models. In /6th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 22), page 665-682. USENIX
Association, 2022.

Appendix

To provide a clearer understanding of our approach, we include the pseudocode for both the reuse-
aware scheduler and the hybrid cache management strategy in this appendix. These algorithms
illustrate the core mechanisms used to score and schedule incoming requests based on cache reuse
potential, as well as the trie-based structure employed to manage and evict cached blocks efficiently.

Algorithm 1: Reuse-Aware Scheduler

Input :Request queue @), Cache strategy cache
Output : Scheduled request order

Initialize pending set: P < (;
while new request v arrives do
P+ PU{r}
bestScore + —oo, bestReq + (;
foreach req € P do
reuse <— prefix length of req.sequence in cache;
waiting <— current time —req.arrival;
score < « - reuse + f - waiting;
if score > bestScore then
bestScore < score;
bestReq < req;
end
end
if best Req # () then
schedule best Req;
P < P\ {bestReq};

end
end

Algorithm 2: Hybrid Cache Management via Trie

Input :Maximum cache blocks B
Output : Cache hit statistics

1 Initialize prefix trie T';

2 total < 0;

3 Function Insert (seq):
Traverse and insert seq into 7T’
UpdateStats for visited nodes;
while total > B do

| EvICT();
end

L 9 & A

9 Function Evict():

10 minVal < oo, target « 0,
11 foreach leaf node n in T do
12 v usage(n)-length(n)

1+recency(n)
13 if v < minVal then
14 | minVal < v, target < n;
15 end
16 end
17 Remove target and recursively clean up;

18 total < total — 1;

Also, We present the detailed experimental results.

Table 3: Detailed cache hit ratios (%) across all datasets, policies, and

cache sizes.

Dataset Eviction Policy Scheduler 100 1k Sk 10k 100k
FIFO 418 445 1122 21.19 3637
Hvbrid Longest 417 448 1122 21.11 3637
Y Shortest 417 447 1121 2115 3637
Reuse 419 452 1155 2125 3637
o FIFO 417 425 593 835 26.88
an"ersa ion LEU Longest 417 437 567 846 26.65
-trace Shortest 418 432 687 863 27.02
Reuse 417 423 563 875 27.20
FIFO 418 445 11.18 21.16 36.37
LRU Longest 417 448 1120 21.08 36.37
Shortest 417 447 1118 21.16 36.37
Reuse 419 452 1151 2122 3637
FIFO 1.13 1362 6134 83.62 83.62
. Longest 3.18 1440 61.09 83.62 83.62

Hybrid
Shortest 3.18 1376 60.84 83.62 83.62
Reuse 193 1652 62.05 83.62 83.62
FIFO 0.54 13.61 5730 83.62 83.62
LooGLE LongDep-QA | Longest 1.08 11.76 56.52 83.62 83.62
Shortest 0.68 9.82 5860 83.62 83.62
Reuse 134 1243 60.79 83.62 83.62
FIFO 1.13 1338 61.38 83.62 83.62
LRU Longest 3.18 1433 6101 83.62 83.62
Shortest 3.18 13.89 60.66 83.62 83.62
Reuse 195 1681 61.99 83.62 83.62
FIFO 33.86 34.08 39.02 46.05 55.22
Hybrid Longest 33.85 34.08 39.07 46.08 55.22

9

mooncake
_trace

Table 3 — continued from previous page

Dataset Eviction Policy Scheduler 100 1k Sk 10k 100k
Shortest 33.85 34.09 39.01 46.06 5522

Reuse 33.87 34.13 3928 46.10 5522

FIFO 29.64 3393 3486 36.78 48.64

LEU Longest 267 3391 3531 37.09 48.63

Shortest 33.86 33.99 34.82 3655 48.60

Reuse 2.67 33.97 3487 3698 48.60

FIFO 30.23 34.08 3899 46.05 5522

LRU Longest 20.66 34.08 39.04 46.08 5522

Shortest 29.66 34.08 3897 46.07 5522

Reuse 31.60 34.13 3928 46.10 5522

FIFO 072 856 2794 4242 63.96

Hvbrid Longest 072 856 2794 4242 63.96

Y Shortest 0.72 856 2794 4242 63.96

Reuse 072 856 2794 4242 63.96

het FIFO 000 134 842 1740 63.96
Sﬁt’n etic LFU Longest 002 133 784 17.68 63.96
-trace Shortest 001 099 818 1497 63.96
Reuse 007 185 9.18 1562 63.96

FIFO 071 841 2793 4239 63.96

LRU Longest 071 841 2793 4239 63.96

Shortest 071 841 2793 4239 63.96

Reuse 071 841 2793 4239 63.96

FIFO 33.84 3406 39.00 46.04 5522

Hvbrid Longest 33.83 34.06 39.04 46.06 5522

y Shortest 33.83 34.07 3898 46.05 5522

Reuse 33.84 34.11 3925 46.09 5522

toolagent FIFO 33.84 3392 3472 36.67 48.67
‘t’° agen LFU Longest 29.63 33.89 3498 36.62 48.64
-trace Shortest 33.84 33.86 34.87 36.92 4855
Reuse 33.84 3396 3459 3690 4858

FIFO 3021 34.06 3897 46.04 5522

LRU Longest 20.64 3406 39.02 46.06 5522

Shortest 29.65 34.06 3895 46.06 5522

Reuse 31.58 34.11 3925 46.09 5522

10

	Introduction
	Related Work
	Method
	Simulation Framework
	Prefix Sharing via Trie-Based Indexing
	Eviction Strategies
	Request Scheduling Strategies

	Experiments
	Datasets and Setup
	Eviction Strategy Evaluation
	Scheduling Strategy Evaluation
	Summary of Best Results

	Conclusion

