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Abstract

Efficiently predicting the output length of large language models (LLMs)1

is crucial for optimizing processing power and memory allocation. This2

paper presents a scalable length prediction framework using a BERT-based3

model trained on the Castillo dataset(Perez-Ramirez et al., 2025) using4

data from Llama-3.2-1B, Llama-3.2-3B, and Llama-3.1-8B. The framework5

integrates classification and regression approaches to estimate token lengths6

and standard variance. It demonstrates strong generalization and robust7

performance across multiple LLMs, including on the unseen dataset. This8

work provides an effective solution for resource-aware deployment of9

LLMs.10

1 Introduction11

Large language models (LLMs) have driven transformative advances in natural language12

processing due to their remarkable capabilities in language understanding and generation13

(Brown et al., 2020; Raffel et al., 2020; Chowdhery et al., 2023). When fine-tuned with14

instructions, LLMs have been widely adopted in applications such as question answering,15

dialogue systems, and code generation (Ouyang et al., 2022; Chen et al., 2021; Achiam et al.,16

2023; Team et al., 2023), serving millions of users daily in both production and everyday17

scenarios. However, the substantial computational and memory overhead poses significant18

challenges to the scalability and cost-efficiency of inference processes.19

Most LLMs adopt an autoregressive architecture, where the model encodes input text and20

predicts subsequent tokens by computing their log probabilities based on the preceding21

context. Under high-concurrency and latency-sensitive settings, efficient management of22

computational and memory resources becomes a core bottleneck in LLM service systems.23

Recent systems research has emphasized memory management of attention key-value (KV)24

caches (Kwon et al., 2023) and reactive scheduling strategies to accommodate runtime25

demand fluctuations (Duan et al., 2024; Patel et al., 2024; Agrawal et al., 2024). However,26

these approaches are constrained by the inherent randomness of the generation process.27

Proactive scheduling strategies aim to predict the output length of LLMs in advance to28

enable preemptive scheduling. This work proposes a fundamental framework for output29

length prediction by training a BERT-based model on the Castillo dataset using data from30

Llama-3.2-1B, Llama-3.2-3B, and Llama-3.1-8B.31

2 Related Work32

Research on LLM output length prediction remains limited. Existing studies primarily33

focus on enhancing resource allocation efficiency in LLM-as-a-Service (LMaaS) systems by34

predicting generation lengths for scheduling CPUs, GPUs, and other hardware resources.35



Zheng et al. (Zheng et al., 2023a) fine-tuned an LLM by appending an instruction to the user36

input, prompting the model to predict its own output length. However, this approach is37

intrusive to user input, may affect the generated content, and was only evaluated on a single38

model. Ke Cheng et al. (Cheng et al., 2024) explored optimized resource allocation in LMaaS39

by employing a small BERT model to predict LLM output lengths using a random forest40

approach. They also implemented an online learning mechanism, collecting and retraining41

on requests where prediction errors exceeded 10 tokens or 10% of the actual output length.42

Haoran Qiu et al. developed the µ-serve system (Qiu et al., 2024), demonstrating that small43

models can achieve high accuracy in output length prediction. They found that classifying44

predicted lengths into five buckets offered the best trade-off for hardware scheduling—finer45

classifications provided better granularity but led to lower accuracy, negatively impacting46

schedulers. Their method utilized BERT as a proxy model, followed by a linear classifi-47

cation head. Training involved joint fine-tuning of BERT and the classifier, followed by48

separate training of the classifier, effectively leveraging BERT’s language understanding49

while maintaining accuracy and training efficiency.50

Perez-Ramirez, D. F. et al. (Perez-Ramirez et al., 2025) introduced the Castillo dataset, which51

consists of prompt–output length pairs across various models, providing a valuable resource52

for further training and evaluation of generation length prediction models.53

3 Dataset Setting54

Upon inspection, the dataset provided in the original task fig. 1 exhibits a distribution con-55

centrated at both ends. Further analysis reveals that the LLama-3.2-1B-Instruct model suffers56

from performance degradation, leading to issues such as token repetition and corrupted57

outputs. These anomalies significantly hinder model training and limit generalization ability58

Layaq, Bairam (2020).59

Figure 1: Generation length distribution

To address this issue, we refined the dataset by removing entries with output tokens exceed-60

ing 15,000 and incorporated the Castillo dataset for model training. This dataset includes61

prompt–output length pairs from various LLMs, comprising seven open-source prompt62

datasets with a total of 15,000 pairs. The datasets encompass open-ended instruction data63

(Dolly, ShareGPT, Alpaca) and code-oriented data (Mbpp, Apps, DS-1000, BigCodeBench).64

During training, we utilized six datasets, excluding Alpaca, and evaluated overall test65

performance on these six datasets. Additionally, we tested on Alpaca to demonstrate gener-66

alization capability. Each dataset entry includes a prompt, its mean output (averaged over67

10 generations), the standard deviation of outputs, and the LLM used for generation,the68

example case for dataset could be seen at Appendix A.1.69

Thus, we adopted the Castillo dataset and selected three models of varying sizes—Llama-1B,70

3B, and 8B—for training. The token length distribution of Llama-3 1B/3B/8B within the71

Castillo dataset is shown in fig. 2, where a more balanced distribution is observed, facilitating72

model training. Relevant information including the mean output and the standard deviation73
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of the output from the Castillo dataset (trimmed top 1%) are presented in fig. 3&fig. 4,74

illustrating that different models generate varying output lengths for the same prompt.

Table 1: Token length statistics for various datasets

Name Samples Mean Min. P25 P50 P75 P99 Max.

DollyDataset 2000 125.9 36 44 50 146 795.2 4003
ShareGPT 2000 260.5 36 48 64 168 2534.0 4003
Alpaca 2000 53.7 39 45 49 57 114.0 397
Mbpp 974 153.5 88 109 131 173 336.3 2265
Apps 2000 545.0 87 307.7 441 650 2105.0 2534
DS-1000 1000 317.2 67 170.5 283 395 1018.3 2109
BigCodeBench 1140 179.8 87 137 164 205 398.4 1251

75

4 Classification Model76

4.1 Model Configuration77

In this part, we try to build a classification model to predict the ouput length. Haoran Qiu78

et al. (Perez-Ramirez et al., 2025) demonstrated in their research that a small proxy model79

can achieve high accuracy with high efficiency. We therefore use BERT as the basic model of80

the classification model, the precise model architecture is presented in fig. 5.81

We employ BERT as the backbone to encode and process the input prompts. The tok-82

enized inputs are passed through BERT’s transformer-based encoder, which extracts high-83

dimensional contextual representations via its hidden layers. These representations are84

then mapped to model-specific information (e.g., the identity of the LLM that generated85

the answer) through a downstream classification module. The model encoder allows the86

classification model to learn from dataset of other models while not being falsely guided. It87

also allows the model to be easily applied on other model’s dataset with few training.88

The classification module consists of:89

• Two linear layers with ReLU activation (applied to the first linear layer)90

• Two dropout layer for regularization91

• A final linear classifier head to predict the target labels92

BERT’s hidden dimension is first reduced to a fixed size (end dimension) before applying93

the specified linear transformations. This architecture facilitates robust feature extraction94

and task-specific adaptation while minimizing overfitting.95

Figure 2: Castillo Dataset Generated Length Distribution (trimmed top 1%)
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Figure 3: Castillo dataset: Mean output length in different models

Figure 4: Castillo dataset: std of output length in different models

4.2 Data Binning Strategy96

In practical applications, bucket classification must be configured based on specific task97

requirements and hardware constraints. To evaluate the precision under varying granularity98

levels, we employed multiple bucket sizes, including divisions per 50, 100, 200, 500 and99

1000 tokens.100

4.3 Model Training Performance101

The loss and accuracy curves during training are depicted in Figure 6. We show only102

Llama-3.2-1B (200 tokens/bin) for brevity; other models follow similar trends.The model103

exhibits overfitting, likely due to the limited dataset size Despite incorporating a dropout104

layer and other tricks, the overfitting issue remains unresolved. Furthermore we present the105

result of training under different bin setting in fig. 7table 2.106

Table 2: Comparison of classification results across different models and bin sizes.

Models Bin Size=50 Bin Size=100 Bin Size=200 Bin Size=500 Bin Size=1000

Acc(%) F1 Acc(%) F1 Acc(%) F1 Acc(%) F1 Acc(%) F1

llama-1B 16.81 0.164 31.21 0.305 50.66 0.499 68.90 0.679 89.78 0.8844
llama-3B 19.23 0.187 33.63 0.335 50.55 0.505 72.64 0.720 92.19 0.9099
llama-8B 16.15 0.151 28.35 0.280 49.12 0.484 67.25 0.667 91.86 0.9020

It can be easily and observed that the Acc decline as the bin size grows, which is easy to107

understand: since there are more bins to choose from, it is harder for the model to allocate108

the prompts into the right bin. According to the result, the model show similar accuracy on109

different models, demonstrating its robustness. The Acc(accuracy) reaches around 50% on110

200tokens/bin, around 70% on 500tokens/bin and around 90 % on 1000tokens/bin, which111

is really impressive.112
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Figure 5: model architecture of classification model

Figure 6: Training curve on Llama-3-1B dataset

4.4 Generalization Experiments113

To test our model’s generalization capacity,the model is tested on Alpaca without any expo-114

sure during training. The result is presented in table 3. Compared to table 2, on the Alpaca

Table 3: Classification results across different models and bin sizes on Alpacha dataset

Models Bin Size=50 Bin Size=100 Bin Size=200 Bin Size=500 Bin Size=1000

Acc(%) F1 Acc(%) F1 Acc(%) F1 Acc(%) F1 Acc(%) F1

llama-1B 10.00 0.094 17.70 0.164 35.45 0.361 71.50 0.714 93.60 0.927
llama-3B 13.35 0.135 24.35 0.254 41.65 0.435 74.50 0.747 96.55 0.952
llama-8B 11.50 0.105 21.75 0.215 34.80 0.354 75.45 0.756 94.55 0.943

115
dataset the model has degenerate accuracy on small bins with fewer tokens(50,100), while116

has relevantly stable results on large bins with more tokens (200,500,1000), demonstrating117

strong generalization capability. Notably, the model performs the strongest generalization118

capability on Llama-3.2-3B.119

5 Regression model120

5.1 Model Configuration121

Based on the classification model, we build the regression model presented in fig. 8.The122

model configuration is similar to that of the classification model, except the last linear layer123

output of the regression model has only two dimensions including the predicted length and124

the predicted standard division(std). By using the standard division, we can further quantify125
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Figure 7: classification over different models

the variation in output length across identical prompts, enabling optimized allocation of126

memory and computational resources in practical deployments.

Figure 8: regression model configuration

127

5.2 Baseline model128

(Zheng et al., 2023b) add prompt after the users’ questions to let the LLM predict the length129

of the generated text before answer the questions. Inspired by this research, the paper130

employs the prompt method as the baseline model.131

Systematic prompt engineering reveals that the Llama-3.2-1B and Llama-3.2-3B models fail132

to understand task instructions, resulting in poor performance metrics. Conversely, the133

larger Llama-3.1-8B model effectively processes engineered prompts. Thus, we employ134

Llama-3.1-8B to compare our method against the baseline (prompt engineering), with the135

specific prompt template provided in Appendix A.2.136

5.3 Model Training Performance137

The loss&accuracy curves on Llama-3-1B dataset throughout the training are shown in fig. 9.138

It can be observed that the regression model do not have overfitting problem, owing to our139

model can get more information from the exact output length than classification results.140
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The result on the test dataset across different LLM models and the result of the baseline141

models are presented in table 4142

Table 4: Comparison of regression results across different methods and models. Of which
"mean" represents the mean output token length, and "std" represents the standard deviation
of output token length.

Models Our regression model Baseline(Prompt)

MSE(mean) MAE(mean) MSE(std) MAE(std) MSE(mean) MAE(mean)

llama-1B 75378.30 121.02 108624.30 80.84 / /
llama-3B 45735.30 119.18 28182.20 54.68 / /
llama-8B 82152.72 128.28 19193.33 51.60 3210768.61 384.03

The experimental results demonstrate consistent mean absolute error (MAE 120 tokens)143

across all model variants, suggesting our regression model’s high accuracy and robustness144

on different models.145

Notably, the 3B model achieves significantly higher stability (MAE mean=51.60) compared to146

other counterparts, which we attribute to its more concentrated token distribution patterns147

during generation. Alsothe Llama-3.2-1B model demonstrates significantly poorer variance148

prediction performance, primarily due to its frequent output degradation during generation.149

Compared to the baseline model, our regression model has profound advantage on accu-150

racy(128.28 vs. 384.01 on MAE and 82152.72 vs. 3210768.61 on MSE). Our model is also151

capable of predicting the standard division of the prompt which is unlikely to be achieved152

by baseline model (prompt engineering).153

5.4 Generalization Experiments154

Following the approach in classification part, we evaluate the regression model on the155

Alpaca dataset. The results are presented in table 5

Table 5: Regression results across different models and bin sizes on Al-
pacha dataset

Models Regression Results on Alpaca

MSE(mean) MAE(mean) MSE(std) MAE(std)

llama-1B 70542.27 163.87 48814.96 70.78
llama-3B 73246.13 164.94 16033.02 53.45
llama-8B 78596.34 175.10 21076.86 52.87

156

Compared to the results on test dataset presented in table 4, the prediction of the std is157

stable, even better on Alpaca dataset, while the accuracy of the predicted mean length158

decrease slightly(120 to 160 on MAE approximately). This demonstrates our regression159

model’s outstanding generalization capability.160

Figure 9: Training curve on Llama-3-1B dataset
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6 Conclusion161

Our findings mark a promising step toward proactive inference optimization in LLMs, and162

we believe the proposed framework can serve as a foundation for future advancements in163

resource-aware LLM serving systems.164

6.1 Innovations165

In this work, we proposed a novel output length prediction framework for large language166

models (LLMs) by leveraging the newly released Castillo dataset. Compared to prior167

approaches, our contributions are multifaceted:168

• Adoption of the Castillo dataset: We utilized the recently open-sourced Castillo169

dataset, which provides comprehensive output length statistics across multiple170

LLMs, enhancing prediction accuracy and generalization.171

• Multi-model validation: Our prediction framework was validated on Llama-3-1B,172

3B, and 8B models, showing consistent and robust performance across different173

model scales.174

• Incorporation of variance prediction: Beyond predicting the mean output length,175

our regression model also predicts the standard deviation, enabling more refined176

resource allocation strategies.177

• Generalization experiments: We demonstrated strong generalization capabilities178

by evaluating on previously unseen datasets (e.g., Alpaca), confirming the model’s179

adaptability.180

• Unified prediction framework: We developed an integrated predictor architecture181

capable of supporting both classification and regression tasks, which can be reused182

across different LLM backends.See example case in Appendix B.183

6.2 Future Work184

While our method demonstrates strong empirical performance, several important research185

directions merit further investigation to advance this line of work. First, architectural186

improvements could address persistent overfitting issues observed despite using larger187

datasets and proxy models, potentially through more sophisticated regularization tech-188

niques or neural architecture search. Second, the development of specialized Chain-of-189

Thought (CoT) benchmarks is critically needed to properly evaluate length generalization190

capabilities, given the unique characteristics and computational demands of CoT reasoning.191

Finally, practical deployment considerations including computational efficiency, memory192

constraints, and robustness against overthinking phenomena require systematic study to193

enable real-world applications. These research directions would not only strengthen the194

current framework but also contribute broadly to the field’s understanding of reasoning in195

large language models.196
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A Appendix / supplemental material263

A.1 Dataset Entry Example (Castillo)264

Prompt Format

{
"sample_id": "b4d89e...",
"prompt_id": "a3f9...",
"model": "meta−llama/Llama−3.3−70B−Instruct",
"dataset": "Alpaca",
"prompt_text": "What is the capital of France?",
"longest_response": "...",
"shortest_response": "...",
"input_size": 8,
"output_sizes": [12, 13, 14, ..., 10],
"output_mean": 12.3,
"output_std": 1.5,
"output_percentiles": {"25": 11.0, "50": 12.0, "75": 13.5, "99": 15.0},
"top_k": 50,
"top_p": 0.9,
"temp": 0.7,
"category": "QA",
"gen_time": 1.84

}

265

A.2 Prompt for baseline model266

Prompt Format

Prompt:
Predict the length of your answer before answering my question, use the
format:"[length(only one number)]: (your answer)". The length of your answer should
be as close to the prediction of the length you give me as possible. Remember to follow
the format. + question.

267

Example Prompt

Prompt:
Predict the length of your answer before answering my question, use the
format:"[length(only one number)]: (your answer)." The length of your answer should
be as close to the prediction of the length you give me as possible. Remember to follow
the format. Who are you

268

Example Answer

Answer:
55: I’m an artificial intelligence model known as Llama. Llama stands for "Large
Language Model Meta AI."

269

A.3 Loss curve of regression model270

Shown in fig. 1fig. 2271
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Figure 1: Loss curve of regression model on Llama-3-3B dataset

Figure 2: Loss curve of regression model on Llama-3-8B dataset

B Unified Models case272

273

Example Test Case

print("\nExample predictions:")

example_prompt = "Introduce Nanjing Univerity In China." # input prompt here
example_model = "llama−3.2−3B" # you can choose model here
# regression results
reg_prediction = predict_response_length(example_prompt, example_model,
task=’regression’)
print(f"Regression prediction: Expected response mean length:
{reg_prediction[’predicted_mean’]:.2f} tokens, "

f"Expected std: {reg_prediction[’predicted_std’]:.2f} tokens")
# classification results
cls_prediction = predict_response_length(example_prompt, example_model,
task=’classification’)
print(f"Classification prediction: P99 token length class:
{cls_prediction[’predicted_p99_class’]}, "

f"Range: {cls_prediction[’predicted_p99_range’]}")

274
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